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Hydrogen has emerged as a major energy 
vector in the past few years; however, its 
storage and long-distance transportation 
remain the key challenges to its widespread 
use. Ammonia is considered to be a potential 
medium for hydrogen carrier and storage. 
Indeed, ammonia is more energy dense than 
hydrogen, easier to transport, and allows for 
a CO2-free alternative fuel that could be used 
in a variety of power generations system. In 
this regard, solid oxide fuel cell (SOFC) 
technology stands out as the most promising 
one that directly converts ammonia into 
electricity with high efficiency. As SOFCs 
operate at high temperatures (> 600 °C), they 
do not require additional energy for external 
reforming and cracking of ammonia. In this 
paper, we critically review the experimental 
demonstration, major achievements, 
progress, and prospects in direct NH3-fueled SOFCs.
The bibliography includes 147 references.
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1. Introduction

The Net Zero Scenario 2050 has come to the centre stage for 
researchers and policymakers alike. The issue of climate change 
calls for urgent measures to decarbonize the environment and 
curb rising global temperatures. Currently, 80% of global energy 
consumption per annum is derived from fossil fuel-based energy 
sources.1, 2 However, in a recent report published by the 
International Energy Agency (IEA),3 a strong shift was observed 
towards renewable energy sources. As a result, the rising global 
temperature was slowed down, although this temperature is 
unlikely to stabilize or decrease in the near future (Fig. 1). The 
contributions of «energy researchers» have seemed to put the 
global situation on the right track, but tremendous efforts are 
still needed. The unpredictability of renewable energy resources 
and the long-standing issue of energy storage are still bottlenecks 
to a net-zero future.4 – 7

Due to the current global situation, renewable resources must 
be utilized as much as possible. Two aspects of this strategy 

require particular attention: efficient energy conversion and 
reliable energy storage.8 – 11

Numerous energy conversion methods have surfaced in the 
past decade, e.g., fuel cells,12 – 17 solid-state batteries,18 – 20 
perovskite solar cells,21, 22 and advanced wind turbines.23 – 28 
Among the many areas, conventional hydrogen-fueled solid 
oxide fuel cells (SOFCs) have attracted considerable 
attention.29 – 37 SOFCs are composed of a ceramic electrolyte 
sandwiched between porous electrodes that convert the chemical 
energy of the fuel into electricity via one electrochemical route, 
avoiding thermal and mechanical energy conversion stages 
(Fig. 2 a). Moreover, SOFCs typically operate at temperatures 
above 600  °C which overcomes sluggish oxygen reduction 
reaction (ORR) kinetics;38 – 42 their operation is also clean as no 
greenhouse gas is emitted.43 – 46

Significant research efforts have been reported in the 
literature to advance hydrogen-driven SOFC technology to its 
full commercial market potential, e.g., to address degradation 
issues and enhance long-term durability 37, 47 – 55 Nevertheless, 

Contents
1. Introduction 2
2. Ammonia: the green fuel for solid oxide fuel cells 4
3. A catalytic pathway: investigating ammonia cracking and 

decomposition reactions 4
4. DA-SOFCs 5

4.1. Microstructure evolution of anode side exposed  6 
to ammonia gas

4.2. Progress and innovations in DA-SOFC 7
5. Conclusion 13
6. List of abbreviations 14
7. References 15

A.M.Mehdi. PhD research scholar at the Hydrogen and Fuel Cell 
Laboratory, Korea Institute of Energy Research.
E-mail: mehdi@kier.re.kr
Current research interests: SOFC fabrication, cathode degradation, 
tape casting, SOFC durability improvement
A.Hussain. PhD in Advanced Energy and System Engineering, 
Senior Research Scientist, Hydrogen and Fuel Cell Laboratory, Korea 
Institute of Energy Research.
E-mail: amjad@kier.re.kr
Current research interests: SOFC/SOEC design and fabrication, tape 
casting, SOFC stack testing, SOFC durability improvement.
M.Z.Khan. PhD in Advanced Energy and System Technology, 
Assistant Professor at Department of Materials Science & Engineering, 
Pak-Austria Fachhochschule: Institute of Applied Sciences and 
Technology.
E-mail: zubair.khan@fcm3.paf-iast.edu.pk
Current research interests: SOFC/SOEC design, fabrication and 
characterization, accelerated life testing of SOFCs, oxide dispersed 
stainless steel interconnects for SOFCs, ceramic coatings, energy 
storage devices, ceramics nanocomposites.
M.B.Hanif. Research Scholar at Department of Inorganic Chemistry, 
Comenius University Bratislava, Slovakia.
E-mail: hanif1@uniba.sk
Current research interests: SOFC/SOEC design, fabrication and 
characterization, solid-state batteries, photocatalysis, Energy storage 
devices, and ceramics nanocomposites.
R.-H.Song. PhD in Materials Science and Engineering, Group Leader 
and Principle Research Scientist at Hydrogen and Fuel Cell 
Laboratory, Korea Institute of Energy Research.
E-mail: rhsong@kier.re.kr
Current research interests: SOFCs/SOECs design, fabrication, and 
characterization, Electrochemistry, Durability improvement and 
lifetime prediction of SOFCs and SOECs.
W.W.Kazmi. PhD research scholar in Renewable Energy Engineering 
at Korea Institute of Energy Research.
E-mail: wajahatkazmi@kier.re.kr
Current research interests: biofuel production, supercritical fluid 
upgrading, carbon-dioxide capture, catalysis, energy conversion and 
storage materials.

M.M.Ali. PhD research scholar at the Hydrogen and Fuel Cell 
Laboratory, Korea Institute of Energy Research.
E-mail: measam@kier.re.kr
Current research interests: SOFC fabrication, electrochemical 
characterization, tape casting, durability testing.
S.Rauf. Dr., Senior Researcher at School of Electronic and 
Information Engineering, Shenzhen University, Guangdong Province, 
China.
E-mail: sajidrauf@szu.edu.cn; sajidrauf.physics@gmail.com
Current research interest: semiconductor-based fuel cell 
technology and the approach of heterostructure formation by 
modulating energy bands to enhance ionic conduction to design 
novel electrolytes.
Y.Zhang. PhD in Electronic Science and Engineering, Head of 
Institute of Advanced Materials and Flexible Electronics (IAMFE), 
Nanjing University of Information Science and Technology.
E-mail: yizhou.zhang@nuist.edu.cn
Current research interests  printed/flexible electronic materials and 
devices.
M.M.Baig. PhD in Nanoscience and Engineering, Postdoctoral 
Researcher at Institute of Advanced Materials and Flexible Electronics 
(IAMFE), Nanjing University of Information Science and Technology.
E-mail: 008481@yzu.edu.cn
Current research interests: advanced materials for energy storage and 
conversion.
D.A.Medvedev. Doctor of Chemical Science, a head of the Hydrogen 
Energy Laboratory at the Ural Federal University.
E-mail: dmitrymedv@mail.ru 
Current research interests: characterization, preparation, and 
application of proton-conducting materials in solid oxide 
electrochemical cells.
M.Motola. Assistant Professor at Department of Inorganic Chemistry, 
Comenius University Bratislava, Slovakia. A head of Materials 
Innovation & Advances Laboratory (MIA).
E-mail: martin.motola@uniba.sk
Current research interests: SOFC/SOEC design, fabrication and 
 characterization, solid-state batteries, photocatalysis, water splitting, 
electrochemistry, energy storage devices, ceramics nanocomposites.



A.M.Mehdi, A.Hussain, M.Z.Khan, M.B.Hanif, R.-H.Song, W.W.Kazmi, M.M.Ali, S.Rauf, Y.Zhang, M.M.Baig, D.Medvedev, M.Motola 
Russ. Chem. Rev., 2023, 92 (11) RCR5098 3 of 17

even after successful commercialization, hydrogen as a fuel 
today is not ideal in terms of storage, handling, and safe 
operation 56 – 59 Hydrogen as a fuel possesses many excellent 
characteristics; it generates electricity in a simple oxidation 
reaction that produces no harmful product or greenhouse gas.60 
Next to nuclear energy, it has the highest heating value (HV) of 
141.7 MJ/kg,61 thus producing a system with up to 50% 
efficiency when supplied to a combined heat and power (CHP) 

SOFC unit.62 However, hydrogen is expensive to store because 
it has a low volumetric energy density (0.01 MJ/L at stp) and 
therefore occupies a huge volume at ambient conditions.63 – 66 
Moreover, its low ignition enthalpy (roughly one-tenth that of 
gasoline), wide flammability range (4 – 75 vol.%), and high 
deflagration index incur additional risk, cost, and caution for its 
storage and handling.67, 68 Another problem with hydrogen 
storage is its relatively high cost. Physical storage of hydrogen 
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Figure 1. A visual representation illustrating the anticipated changes in primary energy consumption across various sources from the year 2010 
to 2050.7
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requires either very high pressure (up to 70 MPa) or cryogenic 
temperatures (20 – 30 K at 1 MPa).69 These two methods account 
for a major portion of estimated energy costs in the total input 
costs of SOFC. In addition to cost, public acceptance of 
cryogenic low pressure or ultra high pressure systems is 
surprisingly low.70 Other than physical storage, several chemical 
methods such as solid-state hydrogen storage or metal hydrides 
have been studied but no reasonable advancements have yet 
been made in this area.71 Here, the dilemma for researchers is to 
have a high-energy density fuel with no greenhouse gas 
emissions or to keep the overall cost of this environmentally 
friendly solution low. While methane and other carbon-based 
fuels possess a high energy density, they are major contributors 
to global warming.72 – 75

Ammonia as a candidate for SOFC fuel appears to offer a 
solution to the drawbacks associated with hydrogen if significant 
development is undertaken to develop direct ammonia SOFC 
(DA-SOFC).76 – 82 As can be seen from Fig. 2 b, ammonia 
decomposition as a way to produce hydrogen fuel for DA-SOFCs 
attains a competitive position among SOFCs supplied with other 
fuels; this confirms the potential prospect of DA-SOFCs. Given 
the well-established ammonia distribution network and the 
regulated handling and storage methods, ammonia occupies an 
unique position as a potential fuel for SOFCs. While ammonia 
offers numerous advantages over hydrogen, there are critical 
areas that warrant research and development to enable its 
widespread commercial use. One notable challenge lies in public 
perception and safety concerns around ammonia. Furthermore, 
while existing pipelines can facilitate ammonia transportation, 
the process of ammonia production itself requires careful 
consideration, particularly if the goal is to reduce emissions and 
achieve carbon neutrality. Ideally, the production of ammonia 
should leave no carbon footprint, however, it is important to 
note that ammonia fuel is susceptibile to NOx generation in the 
event of an unexpected crossover. This aspect requires thorough 
exploration and mitigation strategies to ensure the overall 
environmental benefits of using ammonia as a SOFC fuel.81

Equally important is the techno-economic analysis the cost of 
hydrogen from ammonia. According to Lin et al.,80 hydrogen 
production and purification would cost around 4.78 $/kg. 
Ammonia decomposition in centralized facilities may cost up to 
7.6 $/kg according to another analysis report.83, 84 However, 
using SOFC to decompose ammonia can cost up to 10 euro/kg 
according to the report of Minutillo et al.82

Such a pretext requires extensive study and research to assess 
the current status of ammonia fuel and the problems associated 
with it. To develop a deeper understanding of ammonia fuel in 
DA-SOFCs, in this review article we focus our discussion on the 
characteristics of ammonia as a potential fuel for SOFCs. A 
fundamental understanding would be developed of the anode-
catalyst configuration of DA-SOFCs: how reaction kinetics and 
thermodynamics affect the SOFC design and the microstructural 
evolution of anode exposed to ammonia fuel. Furthermore, we 
will review various efforts of researchers to incorporate 
ammonia as a fuel in DA-SOFCs.

2. Ammonia: the green fuel for solid oxide 
fuel cells
Ammonia is the second largest chemical produced in the world 
and has gained popularity ever since its discovery.85, 86 The 
famous Haber-Bosch process is used for the industrial production 
of ammonia.85 At ambient conditions, it is a colourless & 
odourless gas which requires only 8.5 atm to liquefy.85, 86 

Ammonia is often used as a medium for hydrogen energy 
storage as it has three hydrogen atoms per molecule of ammonia. 
On a weight basis, the hydrogen content of ammonia rises up to 
17.6% which is approximately 1.4 times more than that of 
methanol.87 These unique characteristics make ammonia a 
potential bridge fuel on the way to a hydrogen economy. The 
important advantage of ammonia is the ease of on-site conversion 
of hydrogen and nitrogen. The reaction produces no greenhouse 
gases and keeps the process environment clean. Moreover, it 
provides a significant increase in volumetric energy density of 
hydrogen as compared to pure (liquid) hydrogen.88 It is much 
easier and more cost-effective to store ammonia in cylindrical 
vessels as it offers a high gravimetric density of 0.68 g/mL in 
comparison to liquid hydrogen at –253  °C. Safety concerns 
about ammonia are also a subject of less risk as it is lighter than 
air and has a pungent odour. In the event of a leak, ammonia will 
quickly rise towards the upper part of the ceiling, and it can be 
easily detected by humans at a concentration well below the 
hazardous level.89 Ammonia transportation is also easier than 
that of hyrodgen fuel as it is similar to propane transportation. It 
can be either pressurized to 0.99 MPa at ambient temperature or 
cooled down to – 33.4 °C if it is to be transported as a liquid in 
unpressurized tanks. It can also be transported as a solid by the 
use of metal ammines like Mg(NH3)6Cl2 and Ca(NH3)8Cl2 . 
These metal ammines offer high gravimetric density of hydrogen 
(around 10  wt.%), making them effective carriers for ammonia. 
Additionally, these metal ammines have low toxicity levels, 
comparable to substances like gasoline and methanol. For 
instance, Mg(NH3)6Cl2 has a low Immediately Dangerous To 
Life or Health (IDLH) concentration (about 300 ppm) and 
minimal vapor pressure (1.4 × 10–3 bar at 20 °C). Ammonia can 
be released from these metal ammines through a desorption 
process, often at relatively low temperatures, resulting in a high 
ammonia vapor pressure at room temperature. Because of these 
multiple factors, ammonia stands out as a promising hydrogen 
storage option due to its established infrastructure, safety 
features, and adaptability to existing storage and transportation 
methods.90

SOFC offers ultimate fuel flexibility in operation, and 
ammonia serves as a candidate of high interest in the field of 
direct fuel cells. Theoretically, the high operating temperatures 
of SOFCs allow ammonia to be used as a fuel, where it is either 
cracked at the cracking catalyst layer or, if the anode is modified 
to serve as an electrocatalyst, ammonia is split into hydrogen 
and then transported to the triple-phase boundary for further 
electrochemical reaction.91

3. A catalytic pathway: investigating 
ammonia cracking and decomposition 
reactions

Ammonia cracking or decomposition is a reversible reaction 
with a large endothermic enthalpy (approximate standard 
enthalpy of reaction of 46.4 kJmol–1).

The reaction proceeds as follows:

2 NH3   N2 + 3 H2 (1)

The thermodynamic equilibrium of this decomposition can 
be determined by minimizing the total Gibbs energy of the 
reaction:

(DGsystem)T,P = 0 (2)

The Gibbs free energy can be defined as follows:
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DGsystem = Sni g–i (3)

 g–i is expressed as follows:

lng g RT
f

f
i fi

i

i0
0

= +  (4)

where,  g–0
fi is the standard energy of formation at standard 

conditions, fi  and  f i
0 are the species fugacity at the system 

conditions and at standard conditions, respectively.

K e /G RT( , )T P= D -  (5)

[ ]

[ ] [ ]
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N H
K

/ /

3

2
1 2

2
3 2

=  (6)

An optimal condition for the cracking process involves a 
combination of elevated temperature and reduced pressure. By 
employing the equations mentioned earlier, it is possible to 
calculate the equilibrium compositions of the cracking reaction 
under different temperature and pressure conditions.

Notably, ammonia achieves complete decomposition when 
subjected to temperatures exceeding 500 °C under atmospheric 
pressure as shown in Fig. 3. However, while thermodynamically 
it should undergo complete decomposition within SOFC 
operating conditions (ranging from 600 to 900 °C), the actual 
extent of decomposition at the anode depends on the rate of the 
cracking reaction. However, a reasonable reaction rate requires 
the presence of catalyst even at the high operational temperature 
of SOFCs.92

The elemental kinetics of ammonia decomposition reactions 
are mainly as follows 93

(a) Ammonia is adsorbed on the active sites of the catalyst 
(equation (7)).

(b) N – H bond is successively cleaved to form H atoms 
(equations (8) – (10)).

(c) N and H atoms desorb from the active site to form N2 and 
H2 gas (equation (11), (12)).

NH3 + [S]  NH3 (ad) (7)

NH3 (ad) + [S]  NH2 (ad) + H(ad) (8)

NH2 (ad) + [S]  NH(ad) + H(ad) (9)

NH(ad) + [S]  N(ad) + H(ad) (10)

N(ad) + N(ad)  N2 (11)

H(ad) + H(ad)  H2 (12)

The two key steps of these elementary reactions are the 
adsorption of ammonia on the catalyst site and the desorption of 
adsorbed N-atom and H-atoms from the active site to form N2 
and H2 gas mixture.94

To choose a suitable catalyst, one must consider a material 
that has sufficient binding energy to adsorb ammonia but not too 
strong as it makes it difficult for N-atoms to desorb.95 In this 
context, the volcano relationship for the electrocatalytic 
hydrogen evolution reaction is illustrated in Fig. 4 for better 
understanding.96 Turnover frequency (TOF) is an important 
indicator of the number of reaction cycles per reaction site per 
unit time. It allows researchers to determine the efficiency of the 
catalyst for a particular conversion.97 Ruthenium has the highest 
TOF, which means that it is most suitable for efficient ammonia 
conversion. However, it is a rare metal, so researchers tend to 
focus on Ni or Co catalyst systems.98, 99 Therefore, catalyst 
design for ammonia decomposition is another issue that requires 
planning and calculation.

4. DA-SOFCs

The conventional SOFC is a solid oxide electrolyte fuel cell 
that uses a perovskite cathode and cermet anode materials to 
electrochemically oxidize hydrogen to produce 
electricity.100 – 104 Fueling a SOFC with ammonia requires 
modifications to the standard anode-electrolyte-cathode 
configuration.105 One way is to connect a reformer externally 
either inside or outside the fuel cell chamber. Another way is 
to either modify the anode material to allow a dual purpose or 
deposit a cracking layer made from an ammonia decomposition 
catalyst.80, 91, 106 A reformer, both external and internal, incurs 
additional costs and energy to thermally crack ammonia first. 
The direct deposition of the catalyst layer on the anode side is 
the most common approach. Since ammonia decomposition is 
thermodynamically and kinetically favourable at temperatures 
above 700 °C, ammonia as a direct fuel for SOFCs appears to 
be efficient. The increased efficiency comes from two facts: 
the thermodynamic equilibrium composition of ammonia as 
low as 0.03% at 650 °C; this endothermic reaction can be 
easily coupled with hydrogen oxidation reaction.91, 94 
Moreover, direct deposition of the catalyst layer with the anode 
has already been tested for other carbon-based fuels, e.g., dry 
ethanol or octane fuel. Both experiments showed high 
performance and stability; the coke formation tolerance was 
also satisfactory. However, the thermal expansion coefficient 
(TEC) mismatch can still be a problem with the catalyst layer, 
which is mainly metallic. The layers have a tendency of 
cracking or delamination.80, 91
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4.1. Microstructure evolution of anode side 
exposed to ammonia gas

The catalytic decomposition of ammonia over the nickel-based 
anode produces hydrogen which can mix with ammonia to cause 
a thermochemical phenomenon known as nitriding or gaseous 
nitriding. Industrially, nitriding is a benificial treatment applied 
to metallic substrates that improves mechanical properties, such 
as fatigue and wear resistance. When nickel metal atoms are 
exposed to a NH3/H2 environment at 1 atm, the nitriding 
potential is reasonably reduced. Ammonia acts as a nitrogen-
donating medium with increased chemical activity of nitrogen, 
which would be significantly lower in the case of molecular 
nitrogen.107 To understand the nitriding phenomenon, two 
hypothetical partial reactions can be arranged:108

NH3   0.5 N2 + 1.5 H2 (13)
0.5 N2   [N] (14)
NH3   [N] + 1.5 H2 (15)
Ammonia decomposes into nitrogen and hydrogen (equation 

(13)). At nitriding temperatures, the equilibrium of equation 
(13) is completely on the right side. Nitrogen atoms dissolve in 
the interstitial space of solid nickel (equation (14)). Combining 
these two equations (equation (15)) under the assumption, that 
local equilibrium has been established between the gas and 
nickel anode surface, the following equation can be used to 
evaluate the hypothetical pressure of the molecular nitrogen:

( )
( )

p K
p

p
.

.N
H

NH0 5
1 1 52

2

3
=  (16)

where pNH3
 is the partial pressure of ammonia, pH2

 is the partial 
pressure of hydrogen and K1 is the equilibrim constant of 
equation (13).

Here, the equilibrium condition between gas and solid nickel 
suggests that the chemical potential in the gas and the interstitials 
of nickel must be equal.

2
1

( )intN N erstate( )g2
m m=  (17)

where mN2 (g)
 is the chemical potential of nitrogen in the gas, 

mN (interstate) is the chemical potential of nitrogen in the interstitials 
of nickel.

Using the ideal gas law,

( )ln lnRT
p

p
RT a

2
1

2
1

( ) ( )intN
N

N erstate N s
0

0

0
( )g2

2m m+ = +f p  (18)

where R is the gas constant, T is the absolute temperature, pN2
 is 

the partial pressure of nitrogen gas from equation (16), aN(s) is  
nitrogen at the surface of the nickel anode,  m0

N2 (g)
is the chemical 

potential of the standard pressure of gases, p0 = 1 atm, m0
N (interstate) 

is the standard chemical potential of the nitrogen present in the 
interstitials of the nickel anode.
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From equation (19), the activity of nitrogen can be calculated as:
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Substituting equation (16) in equation (20),

( )
r

p

p

.N
H

NH

1 5
2

3
/  (21)

where rNis the nitriding potential.

This nitriding potential can be defined as the formation 
ability of a nitriding atmosphere to form nitride phases at a given 
temperature and pressure.109 Since nitriding is a known industrial 
process, various studies have been carried out on binary metal-
nitrogen systems to understand the thermodynamics and kinetics 
of the nitride phases. Leineweber et al.109 carefully studied 
nickel substrates nitrided at 1 atm. The temperature was varied 
from 175 to 550 °C in order to observe the growth of Ni3N 
layers and the resulting generation of macro stresses. This study 
indicates a potential degradation risk that ammonia-fueled 
SOFC could face. Since most SOFC anodes are nickel-based 
and undergo catalytic decomposition of ammonia, a suitable 
gaseous environment can lead to the formation of nitride phases 
on SOFC anodes. These nitride phases are detrimental because 
they induce a TEC mismatch with the nickel-based anode. 
Leinweber et al.109 found that specimens nitrided at 400 °C and 
500 °C showed compressive macro defects originated from the 
TEC mismatch during the cooling process.

Therefore, it is important to consider the microstructure 
evolution of nickel-based anodes under an ammonia/hydrogen 
gas environment. Wang et al.105 undertook an in-depth study of 
the effect of ammonia fuel on Ni-YSZ cermet anode at 600 °C 
and 700 °C to assess how the phenomenon of nitriding affects 
the microstructure and performance of ammonia-fueled SOFCs. 
SEM images of the outer surface of the anode before and after 
24 h exposure to ammonia are shown in Fig. 5 a,b,c. After heat 
treatment at 700 °C in an ammonia atmosphere, the surface of 
Ni particles becomes rough with pores <100 nm. This suggests 
weakened Ni-YSZ contacts due to nickel nitride formation and 
increased ohmic resistance. Similar effects are observed at 
600 °C (Fig. 5 b). Moreover, Energy Dispersive X-ray (EDX) 
analysis (Fig. 5 d) confirms the presence of nitrogen on the 
nickel surface. This observation was further validated by mass 
spectrometry results (Fig. 5 e). A Ni-YSZ powder was annealed 
in the presence of ammonia and the outlet gas was closely 
monitored during the heating time. As the temperature increased, 
the nitrogen gas signal increased steadily, while the hydrogen 
and ammonia signals remained constant. This strongly suggests 
that nitrogen originates from the nickel nitride phase. In addition, 
a temperature cycling test was performed on an anode-supported 
cell using ammonia and hydrogen. It was clear that the nitriding 
process of nickel triggered a partial delamination of the support 
layer of the Ni/YSZ anode, ultimately resulting in severe 
degradation of the cell (Fig. 5 f). This study concluded that 
process parameters are key to controlling the nitriding potential 
and thus preventing the degradation of ammonia-fed 
electrochemical cells.

Singh et al.110 and Wan et al.111 provided an evidence of 
degradation due to Ni3N phase formed in ammonia-fed fuel 
cells. The comparison between anode-supported SOFC and 
electrolyte-supported SOFC was made with ammonia and 
hydrogen fuel at 700 °C. After 10 h of operation, the micro-
structure evolution was studied for ammonia fuel. The Ni 
particles coarsened significantly at the anode surface because 
the partial pressure of ammonia is at its maximum at the surface 
(Fig. 6 a,b). As the gas moves towards the anode/electrolyte 
interface, the partial pressure of ammonia decreases and 
nitridation becomes less favourable. Some researchers have 
gone beyond the operating conditions to see if the nitride 
formation could be suppressed.

Hashinokuchi et al.112 added chromium to a Ni/samaria 
doped ceria (Ni/SDC) anode to achieve greater anode stability 
and higher activity for ammonia cracking. The formation of 
nickel nitride leads to a volume change, and it is hypothesized 
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that this nitriding phenomenon results in the agglomeration of 
Ni/SDC particles. At 700 °C, an anode-supported cell containing 
Ni/SDC was exposed to ammonia for 30 h to observe 
morphological changes on the outer surface of the anode. 
Fig. 7 a,b demonstrates Ni coarsening and Fig. 7 c shows the 
XRD results confirming the presence of nickel nitride phase. It 
is inevitable to conclude that the nitride phase is responsible for 
the deterioration of the anodes. The presence of nickel nitride is 
also confirmed by the Ni – N phase diagram, which indicates 
that a Ni3N phase is stable in pure ammonia at 700 °C. The 
group added Cr as a metal oxide with low surface energy to 
promote Ni particle connectivity by increasing the wettability of 
Ni particles and suppressing the agglomeration of Ni in SOFC 
anodes. 3 at.% Cr in Ni/SDC anode showed improved stability 
in ammonia at 700 °C. Accordingly, the nitriding phenomenon 
is critical for ammonia-fed SOFC as it leads to the inevitable 
degradation of SOFC anodes. Overall, durability studies of DA-
SOFC may have to address the issue of nitridation at the anode 
side if a robust technology is expected.

4.2. Progress and innovations in DA-SOFC

The history of ammonia-fueled SOFCs begins when Farr and 
Vayenas supplied ammonia to a ceramic oxide electrolyte fuel 
cell to produce nitric oxide in 1980.113 They achieved a 60% 
yield; however, they also reported the production of electric 
power as shown in Fig. 8 a. To the best of our knowledge, this 
was the first ever evidence of power generation from ammonia-
fueled SOFCs. This cell operated at 900, 1000, 1100, and 
1200 K; it showed large ohmic and polarization resistances, 
especially at 900 K where the voltage dropped to almost zero.114

Since then, ammonia SOFC testing has begun. In 2003, 
Wojcik et al.114 reported an ammonia-fueled SOFC that 
produced 84 mW cm–2 at 900 °C using yttria-stabilized zirconia 
(YSZ) as an electrolyte with Pt anode and no additional catalysts. 
This research group tested different arrangements of the anode 
and cathode with ammonia and hydrogen at temperatures 800, 
900, and 1000 °C, respectively, as shown in Fig. 8 b. The 
performance curves for hydrogen and ammonia were quite 
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similar at 800 and 1000 °C which was encouraging for future 
researchers.

Gradually, the focus was shifted towards ammonia as a 
carbon-free fuel in electrochemical power generation.115 In 
2016, Cinti et al.116 operated a SOFC stack fueled by pure and 
diluted ammonia. Four anode-supported cells were assembled 
using Crofer22APU interconnects with a total active area of 
320 cm2. The theoretical and experimental work showed 
reasonable efficiency, and it was concluded that diluted ammonia 
can be considered as a potential fuel, since it is neither toxic nor 
flammable, as shown in Fig. 8 c.

According to Fig. 9 a, Miyazaki et al.115 used a Ni – Ba(Zr,Y)
O3 (Ni-BZY) cermet anode instead of the conventional Ni-YSZ, 
which shows complete decomposition of ammonia only at 
temperature >600 °C. Ni-BZY was highly resistant to hydrogen 
poisoning at 650 °C and achieved approximately 100 mW cm–2. 
Hydrogen poisoning is an effect that is observed at high 
hydrogen partial pressure at the anode side during ammonia 
decomposition. In such a condition, excess hydrogen atoms 
cover the active sites of the anode surface and reduce the 
dissociative adsorption of nitrogen on the catalyst surface. 
Consequently, the activity of anode catalyst is suppressed.

In addition, Shy et al.117 experimented with pressurized 
ammonia as a fuel for SOFC (Fig. 9 b). Their impedance analysis 
showed a large resistance attributed to gas diffusion. Increasing 
the pressure (up to 3 atm) and temperature seemed to reduce the 
gas diffusion resistance. Thus, cell performance with ammonia 
increased and came close to that of hydrogen-fueled SOFCs.

Recently, there have been notable advances in the field of 
protonic ceramic fuel cells (PCFCs).121, 122 Aoki et al.118 
conducted a study that demonstrated an impressive increase in 
power density using ammonia as a fuel source. They achieved 
this by developing a cell with a 1 mm-thick BaZr0.1Ce0.7Y0.2O3-δ 

(BZCY) thin-film electrolyte deposited on a Pd solid anode. 
Performance analyses were performed over a temperature range 
of 450 – 600 °C, and the results were compared with those 
obtained using hydrogen fuel (as shown in Fig. 9 c,d ). At 
600 °C, the PCFC generated a peak power density of 
580 mW cm–2 using ammonia fuel. Furthermore, Duan et al.119 
investigated a total of 12 different fuels for PCFC, including 
ammonia. Their results showed that ammonia emerged as a 
strong contender as a SOFC fuel, second only to hydrogen. In 
particular, they observed a power density of 600 mW cm–2 at 
600 °C (Fig. 9 e, f ), which is a further confirmation of the results 
obtained by Aoki et al.118

Itagaki et al.123 tested SDC anodes electrophoretically 
deposited with nickel. A mixture of 6% ammonia/argon gas was 
used as a fuel for the electrochemical tests. The as-impregnated 
Ni significantly improved the catalytic activity of SDC over the 
conventional anode. The best catalytic activity was achieved at 
10 wt.% Ni (Fig. 9 g), as a decrease the Ni content resulted in a 
decrease in the molecular diffusion resistance. A maximum 
power density of 99 mW cm–2 was obtained at 900 °C (Fig. 9 h). 
Furthermore, Stoeckl et al.120 operated a SOFC with a 
conventional anode material to compare pure ammonia supply 
with a 3 : 1 hydrogen to nitrogen fuel mixture. The OCV values 
went up to 1.26 V at 700 °C, and a direct ammonia supply can 
result in even higher OCV values. The two fuels provided 
similar I – V graphs and impedance plots suggesting that 
ammonia is a prime candidate for SOFCs as an alternative fuel.

Especially in the last few years (2020 – 2022), the focus on 
direct ammonia fuel cells has increased, Table 1. Researchers 
have historically tested conventional Ni-YSZ anodes for 
ammonia decomposition, but novel materials have recently 
surfaced in the literature. Song et al.121 used La0.55Sr0.30TiO3−δ 
(LST) perovskite substrates infiltrated with NiCo alloy 
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nanoparticles and deposited them on an SDC anode scaffold to 
construct an electrolyte-supported cell. At 800 °C, such a cell 
produced a peak power density of 361 mW cm–2. The LSTNC-
infiltrated SDC anode with ammonia recorded a low ohmic 
resistance which was extremely close to the hydrogen counterpart 
(Fig. 10). It also withstood degradation for 120 h when operated 
at 700 °C.

Xu et al.122 carried out a study showing the improvement of 
a typical Ni-YSZ anode through the incorporation of CeO2 – δ 
nanoparticles (NPs). They fabricated a conventional SOFC with 
a YSZ/GDC bilayer and a PrBa0.8Ca0.2Co2O6 – δ (PBCC) cathode. 
In some cells, they applied a surface coating of CeO2 – δ NPs on 
the anode side using an infiltration technique.123 These cells 
were subjected to testing with pure H2 and NH3 , covering a 
temperature range of 700 to 800 °C. The electrochemical 
characterization of the cells revealed that the ceria NP infiltration 
led to an increase in peak power density for both fuels. Notably, 
the highest peak power density value (2144 mW cm–2) was 
achieved with H2 at 800 °C (Fig. 11 a,b).122 Of particular 

significance was the effect of ceria loading on ammonia fuel 
with a remarkable 37.7% increase in peak power density. In 
contrast, the hydrogen-fed SOFC demonstrated a slightly lower 
gain of 34.5%. To benchmark their findings, the group compared 
their work with peak power density data reported in the literature 
spanning from 2006 to 2022, and their cell surpassed all previous 
records (Fig. 11 c).122

Nowicki et al.124 evaluated the performance of a ammonia-
fueled tubular PCFC, specifically for maritime applications. 
They utilized a NiO/BaCe0.7Zr0.1Y0.16Zn0.04O3 – δ (NiO/BCZYZ) 
tubular support, which was dip-coated with BCZYZ electrolyte 
and a La0.8Sr0.2Co0.5Fe0.5O3 – δ /BaCe0.7Zr0.1Y0.16Zn0.04O3−δ 
(LSCF/BCZYZ) oxygen electrode, providing an active area of 
36 cm2. A comprehensive analysis using detailed electrochemical 
impedance spectroscopy was carried out to investigate the 
contributions of the different processes, including H2 
protonation, gas diffusion, and ohmic losses. The performance 
analysis demonstrated that the tubular PCFC achieved a peak 
power of 236 mW cm–2 at 750 °C and a flow rate of 133 ml/min 
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of NH3 (Fig. 11 d). To gain a deeper understanding of the heat 
management in ammonia-driven SOFCs, Jantakananuruk 
et al.125 conducted experiments using tubular SOFCs with pure 
H2 , 3 H2 : 1N2 , and pure NH3 at three different temperatures: 
700, 800, and 900 °C. Surprisingly, all three fuels generated the 
same peak power density at temperatures above 700 °C, despite 
slight variations in fuel utilization (Fig. 11 e). The researchers 
emphasized the need for heat analysis due to the endothermic 
decomposition of ammonia, which is critical to achieving stable 
heat integration. In conclusion, it was revealed that at 
temperatures exceeding 700 °C, the temperature gradient 
converged to zero, indicating complete ammonia decomposition 
and effective utilization. This finding highlights the importance 
of proper heat management to maximize the performance of 
ammonia-driven SOFCs.

Chien et al.142 investigated the utilization of PCFC with 
ammonia fuel. Their study aimed to compare the performance of 
PCFCs and conventional SOFCs both with and without a 
lanthanum strontium ruthenium titanate (LSRT) catalyst on the 
anode side. In the experiment, the electrolyte-supported cells 
were exposed to pure hydrogen and ammonia at a temperature of 
600 °C. Initially, the SOFC exhibited better performance 
(23.1 mW cm–2 with 1% LSRT) with both fuels (Fig. 12).142 
However, it experienced rapid degradation within a mere 24 h 
despite the stable nature of the PCFC. The observed stability for 
the latter is attributed to the oxidation process occurring at the 
cathode side, whereas in the case of the SOFC, repetitive 

nitridation and subsequent oxidation at the anode side lead to 
structural degradation.

Wang et al.133 modified the conventional Ni-YSZ into 
Ba – Ni-YSZ to enhance the catalytic activity of the anode at low 
temperatures. The issue of hydrogen poisoning was mitigated 
when these anodes were introduced in a flat-tubular SOFC with 
symmetrical double-sided cathodes (DSC). In another literature 
report, Wang et al.143 performed 15 thermal cycles and found 
promising stability of flat-tubular DSC cells (Fig. 13 a).

Miyazaki et al.144 investigated PCFC for ammonia supply 
and experimented with Ni – BaCe0.4Zr0.4Y0.2O3 – δ cermet anode 
to perform the impedance analysis with ammonia fuel. Ammonia 
fuel supply conditions were found to strongly affect the mass 
transfer in fuel cells and thus the polarization resistance. 
Recently, Zhu et al.131 suggested Ru – (BaO)2(CaO)(Al2O3) 
(Ru-B2CA) as a reversible ammonia catalyst for reversible 
PCFC. In both operation modes, the group reported reasonable 
results. At 600 °C, the cell was operated for 1250 h under stable 
conditions. It generated 877 mW cm–2 at 650 °C (Fig. 13 b,c).

In the last two years (2022 – 2023), researchers have proposed 
various novel compositions and modifications for materials to 
combat sintering problems of anodes for ammonia.145, 146 
A Pr0.6Sr0.4Co0.2Fe0.75Ru0.05O3 – δ composite anode recently 
prepared by Xiong et al.,127 is characterized by an increased 
kinetic activity of the anode materials and a significant avoidance 
of sintering problems as depicted in Fig. 13 d. Pan et al.128 
experimented with a tubular protonic SOFC with an embedded 
catalytic iron layer. Peak power density of around 1060 mW cm–2 
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was achieved (Fig. 13 e, f ) by minimising anode contact with 
ammonia which enhanced the activity and durability of the cell. 
Zhang et al.129 fabricated a Fe-decorated Ni-
BaZr0.1Ce0.7Y0.1Yb0.1O3 (Ni–BZCYY) anode and verified its 
kinetics using first principles-based mechanistic and microkinetic 
modelling. A peak power density of 1609 mW cm–2 at 650 °C 
was observed (Fig. 13 g). 

In summary, since the first demonstration of electricity 
generation from ammonia-fueled SOFCs in 1980, there has been 
a steady increase in the number of new ammonia-fueled SOFCs. 

Over the years, researchers have tested various anode and 
cathode arrangements with ammonia and hydrogen at different 
temperatures. As discussed, researchers have explored new 
materials and their modifications to overcome the problems of 
anodes for electrochemical ammonia synthesis. These include 
infiltrating NiCo alloy nanoparticles on perovskite substrates, 
modifying conventional Ni-YSZ into Ba – Ni-YSZ, and using 
PCFCs instead of the conventional SOFCs based on oxygen-
conducting electrolytes. The latest report suggests 
Ru – (BaO)2(CaO)(Al2O3) (Ru-B2CA) as a potential ammonia 
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Table 1. List of ammonia-fueled DA-SOFCs and their performance at different temperatures. Reproduced from work 128.

Year Anode/Electrolyte/Cathode Fuel Temperature, °C Performance, mW cm–2

2023 122 Ni-YSZ/YSZ/PBCC NH3 800 1375
750 997
700 673

2023 122 CeO2–δ-infiltrated Ni-YSZ/YSZ/PBCC NH3 800 1893
750 1351
700 941

2023 126 1 wt.% LSTR NiO-BZCY/BZCY/Pt NH3 600 20.93
2023 126 1 wt.% LSTR NiO-YSZ/YSZ/LSM-YSZ/LSM NH3 600 5.11
2023 124 Ni-BCZYZ/BCZYZ/LSCF-BCYZY NH3 750 236
2022 129 PSCFRu/SDC/BCFZY NH3 800 512

750 401
700 302
650 207

2022 128 Ni – Fe-BZCYYb/BZCYYb/PBSCF NH3 700 1078
650 685
600 327

2022 129 Ni – Fe-BZCYYb/BZCYYb/PBSCF NH3 700 1609
650 1257
600 723
550 360

2022 125 NiO-YSZ/YSZ/LSCF NH3 900 370
800 380
700 350

2021 130 Ni-BZCYYbPd/BZCYYb/BCFZY NH3 650 600
600 440
550 336

2021 131 (Ru-B2CA catalyst layer) Ni-BZCYYb/BCFZY/
BZCYYbN

NH3 650 877
600 ~ 650
550 ~ 420

2020 132 Ni-YSZ/YSZ/LSCF NH3 750 195
2020 133 Ba – Ni-YSZ/YSZ/LSCF NH3 750 275
2020 121 NiCo-LST-SDC/SDC/BSCF NH3 800 361

750 260
700 190
650 120

2020 134 Ni-BCZY/BCY20/BCY20-LSCF NH3 700 ~ 340
650 ~ 240
600 ~ 180
550 ~ 130

2019 120 Ni-YSZ/YSZ/LSCF NH3 750 584
2018 117 Ni-YSZ/YSZ/LSCO NH3 850 1174

800 1078
2018 118 Pd/BZCY/LSCF NH3 600 580

550 340
500 210
450 71

2018 123 Ni-SDC/ScCSZ/SSC-SDC 6% NH3/Ar 900 98.8
850 ~ 70
800 ~ 45
750 ~ 20

2018 119 NiO-BZY20/BYZ20/BCFZY NH3 600 600
2017 115 Ni-BZY/BZY/Pt NH3 700 ~ 125

650 ~ 96
600 ~ 72

2015 135 Ni-YSZ/YSZ/LSCF NH3 700 ~ 325
600 ~ 100

2014 147 Ni-Fe-SDC/LSGM/SSC NH3 800 ~ 400
750 ~ 300
700 ~ 200

2014  116 NiO-YSZ/YSZ/GDC-LSCF NH3 750 300
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catalyst for reversible PCFC. Among these reports, many 
researchers have achieved performance curves close to those of 
the conventional hydrogen SOFCs making the topic of direct 
ammonia SOFCs particularly attractive.

5. Conclusion

Ammonia is one of many fuel sources for producing clean 
energy that is as environmentally friendly as hydrogen and has 
no net carbon emissions. It is also easy to store and distribute. 
Because of its nature, ammonia can be stored in liquid form 
under favourable conditions. Over the last past decade, numerous 
studies have been conducted on ammonia, supporting the claim 

that it is the best carbon-free energy source. Since the high 
operating temperature (>600 °C) could contribute to in-situ 
ammonia decomposition in the presence of catalysts, ceramic 
fuel cells have been used for direct ammonia utilization. SOFCs 
have the potential to be one of the most competitive energy 
conversion technologies due to their inherent high efficiency 
and minimal pollutant emissions. Very high operating 
temperatures make SOFC a fuel-flexible technology, allowing 
the use of alternative fuels such as ammonia. Some recent works 
have reported that the NH3-fed SOFC or PCFC performances 
are comparable to those of the hydrogen-fueled counterparts, 
but several degradation issues need to be addressed before 
stable, industrial-scale operation can be achieved.

Тable 1 (continued).

Year Anode/Electrolyte/Cathode Fuel Temperature, °C Performance, mW cm–2

2010 136 Ni-BZCY/BZCY/BSCF NH3 750 ~ 390
700 ~ 330
650 ~ 270
600 ~ 180

2007 137 Ni-YSZ/YSZ-LSM-YSZ NH3 750
650

526
86

2007 138 Ni-BCNO/BCNO/LSCO NH3 700 315
2007 139 Ni-SDC/SDC/BSCF NH3 650 1190

600 434
550 167

2006 140 Ni-BCGO/BCGO/LSCO-BCGO NH3 750 384
700 355
650 184
600 96

2006 141 Ni-SDC/SDC/SSC-SDC NH3 750 384
700 355
650 184
600 96
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6. List of abbreviations

Abbreviations:
CHP — Combined Heat And Power.
DA-SOFC — Direct Ammonia Solid Oxide Fuel Cell.
DSC — Doubled Sided Cathodes.
EDX — Energy Dispersive X-ray.
NP — Nanoparticles.
OCV — Open Circuit Voltage.
ORR — Oxygen Reduction Reaction.
PCFC — Protonic Ceramic Fuel Cells.
SOFC — Solid Oxide Fuel Cell.
TEC — Thermal Expansion Coefficient.

Composition designations:
B2CA — (BaO)2(CaO)(Al2O3),
BCFZY — BaCo0.4Fe0.4Zr0.1Y0.1O3−δ,
BCGO — BaCe0.8Gd0.2O2.9,
BCNO — BaCe0.9Nd0.1O3−δ,
BCY20 — BaCe0.8Y0.2O3−δ,
BCYZY — BaCe0.7Zr0.1Y0.16Zn0.04O3−δ,
BCZY — BaCe0.4Zr0.4Y0.2O3−δ,
BSCF — Ba0.5Sr0.5Co0.8Fe0.2O3−δ,
BZY — Yttrium-doped Barium Zirconate,
BZY20 — BaZr0.8Y0.2O3–δ,
BZCY — BaZr0.1Ce0.7Y0.2O3-δ,
BZCYYb — BaZr0.1Ce0.7Y0.1Yb0.1O3−δ,
GDC — Galdonia-doped Ceria,
LSCF — Strontium-doped Lanthanum Cobalt Ferrite,
LSCO — Stronitum-doped Lanthanum Cobaltite,
LSGM — Mg-doped Lanthanum Gallate,
LSM — Strontium-doped Lanthanum Manganite,
LST — La0.55Sr0.30TiO3−δ,
LSTR — La0.4Sr0.6Ti0.98Ru0.02O3,
PBCC — PrBa0.8Ca0.2Co2O6−δ,
PBSCF — PrBa0.5Sr0.5Co1.5Fe0.5O5+δ,
PSCFRu —  Pr0.6Sr0.4Co0.2Fe0.75Ru0.05O3-δ,
SDC — Samaria-doped Ceria,
SSC — Sm0.5Sr0.5CoO3−δ,
YSZ — Yttria-stabilized Zirconia.
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Figure 13. (a) Thermal cycling of flat tubular DSC cells from 550 °C to 
750 °C. Reproduced from work.143 Electrochemical performance of protonic 
SOFC for (b) H2 and (c) NH3 . Reproduced from work.131 (d ) Comparison 
of the kinetic activity of r-PSCF and r-PSCFRu. Reproduced from work.127 
Electrochemical Performance of (e) bare tubular protonic SOFC and ( f ) Fe-
embedded protonic SOFC. Reproduced from work.128 (g) Effect of Fe infiltra-
tion on the performance of NH3-PCFC. Reproduced from work.129
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