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1. Introduction

The development of new small drug molecules is a high-tech, 
phased, and expensive process.1 To reduce the time and financial 
expenses in the early stages of development, various 
computational modelling methods 2, 3 are typically employed. 
This allows for the analysis of, for example, the probable 
mechanism of ligand binding to a target, selection of the most 
promising molecules for high-throughput virtual screening 

(VS)4 stage, prediction of their pharmacokinetic parameters,5 
suggestion of retrosynthetic pathways,6 and evaluation of other 
important properties. Historically, the following key approaches 
to virtual screening have formed:7

— ligand-based drug design, LBDD;
— structure-based drug design, SBDD.
Both approaches have their strengths and weaknesses; 

however, the latter method can be considered more accurate 
and informative. It is evident that to carry out typical SBDD 
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The development of novel small drug 
molecules is a complex and important 
cross-disciplinary task. In the early stages 
of development, chemoinformatics and 
bioinformatics methods are routinely used 
to reduce the cost of finding a lead 
compound. Among the tools of medicinal 
chemistry, docking and molecular 
dynamics occupy a special place. These 
methods are used to predict the possible 
mechanism of binding of a potential ligand 
to a protein target. However, in order to 
perform a docking study, it is necessary to know the spatial structure of the protein under investigation. Although databases of 
crystallographic structures are available, the three-dimensional representations of many protein molecules have not been reported. 
There is therefore a need to model such three-dimensional conformations. Several computer algorithms have been published to solve 
this problem. AlphaFold is considered by the scientific community to be the most effective approach to predicting the three-
dimensional structure of proteins. However, the scope of its application in medicinal chemistry, especially for virtual screening, 
remains unclear. This review describes methods for predicting the three-dimensional structure of a protein and provides representative 
examples of the use of AlphaFold for the design and rational selection of potential ligands. Special attention is given to publications 
presenting the results of experimental validation of the approach. On the basis of performed analysis, the main problems in the field 
and possible ways to solve them are formulated.
The bibliography includes 154 references.
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(structure-based drug design) procedures, one must have 
access to the three-dimensional structure of the target (in most 
cases, this is a protein molecule; see Section 7 for the full 
names of the proteins reviewed in this overview). Such 
information can be found in specialized sources, such as the 
PDB a database, which contains data on the three-dimensional 
structures of proteins.8 However, for many targets, especially 
new ones, such information may be lacking. In these cases, the 
method of constructing three-dimensional structures by 
homology is often employed 9 if crystallographic data of 
comparatively high resolution (preferably not more than 3 Å) 
are available for a closely related template. It should be noted 
that until recently, there were no available effective and 
accurate methods for solving such a task within the scope 
of VS.

The rapid development of machine learning and artificial 
intelligence methods has led to the creation of computational 
algorithms that, among other things, allow for the prediction of 
three-dimensional protein structures.10 – 12 This undoubtedly 
holds great significance for bioinformatics, structural biology, 
enzymology, in particular for the study of enzyme action 
mechanisms and self-regulation,13 the investigation of oncogenic 
mutations,14 modelling of protein – protein interactions,15 etc. 
Such methods play an important role in X-ray crystallography 16, 17 
and in conducting broad statistical studies of various functional 
and structural properties. Overall, information about their three-
dimensional geometry is necessary for the creation of protein 
molecules; this information also contributes to a deeper 
understanding of protein functions under normal physiological 
conditions and in pathologies.

Despite the obvious successes in predicting the three-
dimensional structure of proteins, the effectiveness of such an 
approach depends on the specific task. In medicinal chemistry, 
significant attention is paid to the mechanism of interaction 
between the ligand (small molecule) and the binding site through 
the formation of chemical bonds between the atoms of the ligand 
and the amino acids that constitute the binding site, which 
largely determines its affinity and selectivity. Furthermore, it is 
necessary to consider the conformational flexibility and 
heterogeneity of the sites,18 the nature of the solvent 
molecules 19, 20 filling the site cavity, including bridge water 
molecules, and in some cases, the critical role of just one or two 
amino acids that determine the activity and selectivity among 
the closest homologues in the family, for example, as in the case 
of CDK5/2 kinases (Asn144/Asp144),21 Wee1/2 (Asp386/
Ala386).22 The solvent effect for polar amino acids forming the 
active site of the enzyme is generally weaker. The spatial 
position of such ensembles is deterministic, which is reflected in 
their B-factor values. The relatively low conformational mobility 
of amino acids is ensured, among other things, by hydrogen 
bonds. However, differences in substrate specificity are observed 
even among close homologues, despite their considerable 
overall spatial similarity. For example, among ATP-competitive 
kinase inhibitors (ATP stands for adenosine triphosphate), 
selectivity is determined by interaction both with amino acids in 
the hinge region and with distant pockets, which, in particular, 
defines the type of kinase inhibitors.23 In other words, in many 
protein molecules, depending on their functions, there are 
conservative areas the spatial geometry and mutual arrangement 
of which can be predicted with relatively high accuracy by 
modern methods. Examples include evolutionarily developed 
domain structures and regions characterized by relatively high 
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mobility, which often influences the binding of a ligand to the 
protein target (protein – ligand docking).

Molecular docking methods play an important role in the 
arsenal of the modern medicinal chemist. They are used to 
assess the possibility of ligand binding to a specific area in the 
target structure. It is clear that in modelling scenarios where the 
amino acids lining the binding site remain stationary and the 
three-dimensional geometry of the ligand is optimized to 
minimize the scoring function, even seemingly minor differences 
in the pocket geometry can lead to invalid results from the 
computational experiment. When using flexible docking, which 
optimizes the positions of the ligand atoms and surrounding 
amino acids simultaneously, the effect of such differences is 
mitigated, but assessing the result remains challenging, as in 
most cases only one ‘trajectory’ along the gradient of potential 
energy is selected. A more detailed mechanism of ligand 
interaction with the target can be obtained through a dynamic 
description of the binding process using molecular dynamics 
(MD) methods.24, 25 However, such approaches involve 
significant time expenditures and require substantial 
computational power. It should be noted that not all ligands bind 
according to the key – lock principle; many interact with the 
binding site according to the induced fit mechanism, which is 
associated with conformational transitions in the pocket 
structure. Similarly, drugs acting on allosteric sites lead to 
changes in the geometry of the binding site with the endogenous 
ligand, unless the discussion involves the regulation of protein–
protein interactions. Given the above, the question of the 
applicability limits of neural network algorithms, which predict 
the three-dimensional structure of proteins for the needs of 
medicinal chemists, especially in the early stages of development, 
remains open.

2. Computer algorithms for predicting the 
three-dimensional structure of protein 
molecules
Anfinsen’s seminal study 26 conducted in the 1970s demonstrated 
that the tertiary structure of a protein depends on its amino acid 
composition. The development of sequencing methods has 
allowed for the identification of more than 2.6 billion nucleotide 
sequences as of 2021,b of which more than 200 million have 
been translated into corresponding amino acid sequences.c 
However, the amino acid composition alone provides only a 
limited understanding of the biological functions of a protein, 
since these functions are determined by its spatial structure. For 
instance, nearly 30% of the human proteome consists of 
disordered structures that perform their functions despite the 
lack of well-defined tertiary structures.27 Specifically, the active 
conformation of such proteins may form at the moment of 
interaction with a partner molecule.28 Owing to crystallography 
and NMR spectroscopy methods, there are currently more than 
200,000 three-dimensional conformations of protein molecules 
in the protein structure database, which is less than 0.1% of the 
total number of sequences in the UniProt database. Over time, 
the gap between the number of known protein sequences and 
experimentally determined tertiary structures is narrowing. In 
recent years, the spatial structures of many proteins have been 
modelled using various computational methods. The 
development of high-precision protein structure prediction 

methodologies is the most promising approach to bridging the 
discrepancy between the number of known amino acid sequences 
and the number of experimentally determined three-dimensional 
protein conformations.

Research aimed at predicting the tertiary structure of protein 
molecules began in the mid-20th century when the first 
Ramachandran plots 29 were published and methods for 
constructing three-dimensional structures based on amino acid 
sequence homology were proposed.30, 31 Later, the first software 
emerged, including the MODELLER and SWISS-MODEL 
algorithms to model the protein tertiary structures based on 
homology. For instance, for proteins with amino acid homology 
over 50% relative to the template, the average root mean square 
deviation (RMSD) may not exceed 1 Å compared to the 
experimentally determined structure. Alignment is typically 
carried out using the Needleman – Wunsch or Smith – Waterman 
algorithm,32, 33 with relatively fast alignment achievable using 
programs like BLAST,34 PSSMs and HMMs,35, 36 3D-Jury 37 
and LOMETS.38 It is clear that as homology decreases, the 
deviation increases, averaging 2 – 5 Å for homology around 
30 – 50%, while for proteins with <30% homology, modelling 
results are mostly considered unreliable.39, 40 Identifying 
remotely homologous templates is no less challenging,41 
reducing the likelihood of selecting the most suitable structure 
for modelling.

Currently, various neural network algorithms for the 
modelling of three-dimensional structures of protein molecules 
are available. The general goal of such approaches is to predict 
the spatial position of each atom in the protein molecule based 
on its amino acid sequence. Some methods use available 
templates for modelling, while others do not require the presence 
of homologous three-dimensional structures. During the 
scientific competition CASP-14 (CASP is Critical Assessment 
of Protein Structure Prediction), it was shown that using an end-
to-end approach based on deep learning algorithms,42 it is 
possible to predict the coordinates of amino acid atoms in single-
domain protein molecules with high accuracy, in particular 
without the direct use of templates. The quality of the prediction 
was weakly correlated with the number of available homologues. 
The most well-known algorithms that allow modelling of the 
tertiary structure of a protein based on its amino acid sequence 
are presented in Table 1. As an example, let us take a closer look 
at some of them.

One of the successful strategies for modelling the three-
dimensional structures of protein molecules with distant 
homology is I-TASSER.56 For template searching, the algorithm 
uses the threading method, performed by the LOMETS (local 
meta-threading server) 38 module. In the structure of the 
identified templates, closely related fragments and their three-
dimensional conformations corresponding to sections of the 
studied amino acid sequence are determined. These fragments 
are then assembled into a set of tertiary conformations of a 
‘virtual’ protein, which has the maximum similarity in relation 
to the studied amino acid sequence. This stage is carried out 
using the Monte Carlo method and the DOOP (docking decoy-
based optimized potential) algorithm,57 which uses empirically 
distance-dependent interactions between pairs of atoms and 
considers elements of the secondary structure. As a result, 
thousands of possible three-dimensional structures are generated. 
Next, a clustering procedure based on structural similarity is 
carried out. Statistical processing of the clustering results allows 
for the identification of the most probable three-dimensional 
structures from the formed clusters, with the scoring function 
being calculated using SPICKER.58 Then, a reassembly 

b GenBank. https://www.ncbi.nlm.nih.gov/genbank / (access 
28.03.2024).
c UniProt. https://www.uniprot.org / (access 28.03.2024).
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procedure is carried out using the LOMETS, TM-align (Ref. 59), 
and IRP (inherent reduced potential) algorithms. The final full-
atom three-dimensional protein model is created during 
optimization by the modified REMO H-Bond algorithm 60 using 
a set of empirical rules. Unaligned sections are also minimized. 
A key feature of I-TASSER is the use of sets of structural 
templates. Examples of using this algorithm to solve various 
tasks in the field of bioinformatics and the development of new 
drug molecules are described in a number of publications (see, 
for example, Refs 61 – 65).

Before the emergence of AlphaFold, the ROSETTA 
algorithm 44, 66 was leading in the CASP (Critical Assessment of 
Protein Structure Prediction) competitions. The program is 
based on the fragment insertion approach, which uses relatively 
short segments from known protein structures to initiate 
modelling. For each small fragment (3 – 9 amino acids) of the 
protein sequence, the algorithm searches for suitable three-
dimensional templates and randomly selects them as starting 
representations with a homology threshold of 50%. Alignment 
is performed using the PSIBLAST algorithm,67 involving full 
pairwise comparison. Fragments are described by torsion angles 

from a library of training examples (crystallography data with a 
resolution of no more than 2.5 Å). For predicting secondary 
structures, ROSETTA uses methods like Psipred, SAM-T99, 
and JUFO; torsion angles are compared with corresponding 
angles from the training examples, and erroneous results are 
excluded from consideration. Next, assembly and optimization 
procedures of the initial three-dimensional conformations are 
carried out using the Monte Carlo method and an energy 
function. At this stage, the algorithm introduces random changes 
to the values of torsion angles and ranks changes with a certain 
probability, according to the Metropolis criterion.68 ROSETTA 
uses a specialized empirical function for calculating potential 
energy to evaluate the results, taking into account the Lennard-
Jones potential, solvation, and intermolecular hydrogen bonds. 
The goal of the optimization stage is to select the most stable 
conformations for a given amino acid sequence. A feature of the 
program is that the algorithm does not just create one structure 
and evaluate it but generates multiple possible variants and 
ranks them based on the scoring function. In each iteration, 
ROSETTA refines and improves the prediction outcome.

Table 1. Examples of software for predicting the three-dimensional structure of protein molecules.

Algorithm name
First 
publication 
year

Short description Ref.

Crystallography & NMR System 
(CNS)

1997 Predicting the three-dimensional structure of a protein is based on experimental 
crystallographic data or NMR

43

ROSETTA 2001 For predicting three-dimensional conformations of proteins, the Monte Carlo algorithm 
and a proprietary energy scoring function are used

44

HHpred 2005 The method is based on searching for homologous templates using a hidden Markov 
model, particularly searching for examples with distant homology. The MODELLER 
algorithm is used to create three-dimensional models

45, 46

Pcons 2001 The algorithm compiles predicted three-dimensional protein structures from various 
sources to create a consolidated final forecast, enhancing the accuracy of the resulting 
structure

47

I-TASSER (iterative threading 
assembly refinement)

2008 An iterative approach that utilizes structural templates from known databases to predict 
the three-dimensional structure of protein molecules and employs a fragment method

48

Phyre2 2011 The method is based on detecting homology between related proteins with known 
structures; taking these data into account, the structure of the protein of interest is 
predicted

49

QUARK 2012 The de novo method is based on constructing the protein structure from fragments, 
without using information about known structural templates

50

AlphaFold-1 2018 The method is based on deep learning and predicts three-dimensional structures of 
protein molecules. The algorithm uses the ResNet architecture for modelling the 
distance map, as well as the values of the dihedral angles ψ and φ

51

AlphaFold-2 2020 An improved version of AlphaFold-1, which uses the Transformer architecture to model 
the relationships between amino acids

52

SPARKS-X (sequence, secondary 
structure profiles and residue-level 
knowledge-based energy score)

2020 The method is based on the alignment of primary sequences and structures of proteins: it 
combines ab initio protein folding and the prediction of three-dimensional structure 
based on templates, considering the implicit influence of solvent molecules

36

OmegaFold 2022 Analogous to AlphaFold, however, the architecture and size of neural networks differ. 
The template search is not conducted by classical methods but through a neural network 
approach

53

ESMFold 2023 The method utilizes a language neural model (Transformer ESM-2), surpassing 
AlphaFold in speed but inferior in accuracy. The program predicted the structures of 
600 million proteins within two weeks

54

SWISS-MODEL 2009 The construction of a three-dimensional protein model includes four main stages: 
searching for a suitable structural template, aligning the study sequence with the 
template, building the three-dimensional model, and assessing the quality of the model

55
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The I-TASSER and ROSETTA approaches are generally 
similar; however, the latter does not use the threading procedure 
and employs its own empirical function to estimate potential 
energy using the Metropolis criterion. ROSETTA uses a 
multitude of different starting structure variants, and the 
databases of initial templates also differ. The program operates 
in multiple threads, resulting in a large set of structures, with 
close conformations being clustered together. Sparse groups are 
not considered, and from the remaining ones, those with the 
lowest average energy are selected. In the first stage, ROSETTA 
essentially annotates the studied amino acid sequence for the 
potential presence of conservative secondary conformations, 
comparing small fragments of the sample with a reference 
database. This procedure is probabilistic in nature, as it involves 
many independent runs. Each amino acid is represented by a 
limited set of anchor points (practically, harmacophore centres) 
to accelerate the modelling process in the early stages. As a 
result, the program presents several variants of possible packings 
with minimal potential energy values. A full-atom model is then 
constructed and undergoes final optimization. However, the 
program does not perform best with proteins longer than 150 
amino acids and requires substantial computational power and 
typically significant time expenditures. Examples of using 
ROSETTA algorithm can be found in a number of 
publications.69 – 72

SPARKS-X is the latest version of the program for sequence, 
secondary structure profiles, and residue-level knowledge-based 
energy score, which predicts the three-dimensional structure of 
a protein based on its amino acid sequence (previous versions 
include SPARKS, SP2, SP3, SP4, and SP5).36 The algorithm is 
based on the method of multiple sequence alignment,67 
secondary structure prediction, its own scoring function 73 
(modified SKSP method),74 comparison method using template 
structures,75 evaluation of the solvent accessible surface area 
(SASA),76 and a torsion angle prediction module 77 using 
machine learning methods. In the CASP-6 and CASP-7 
competitions, the SPARKS, SP3, and SP4 programs were 
among those that showed the best results.78, 79 Unlike previous 
versions, SPARKS-X integrates an updated energy function 
using hidden Markov models.80 This improvement has enhanced 
the prediction quality for secondary structure based on the 
primary sequence: Q3 = 81 – 82% (the proportion of correctly 
predicted substructures; Q3 is a calculated parameter reflecting 
the accuracy of predicting a protein secondary structure: 
α helices, β-sheets, and loops 81). The mean absolute error values 
for ψ and φ angles were 33° and 22°, respectively, with a 
determination coefficient R2 = 0.74 for SASA. The alignment 
procedure on template sequences is implemented using a 
modified function from SP5 and the PSIBLAST method, with 
the optimization of the scoring function being performed 
according to the Smith – Waterman algorithm,33 and template 
structures ranked according to the value of the standard statistical 
Z-score. Specifically, the developers managed to improve the 
overlay of Cα atoms according to the obtained values of the 
scoring function MaxSub (Ref. 82) for different protein families.

Protein secondary structure prediction involves several 
stages. First, a PSSM (position specific scoring matrix) is 
constructed using the PSIBLAST mutational profile and seven 
parameters reflecting steric hindrance, hydrophobicity, volume, 
polarizability, isoelectric point, and the probability of forming 
α-helices and β-sheets.83 These parameters, along with the 
PSSM, serve as the input vector to a neural network. The 
secondary structure is evaluated using the composite SKSP7 
scoring function.84 In the next step, another neural network with 

a RealSPINE architecture 85 predicts the SASA (solvent 
accessible surface area) for amino acid residues, using the 
PSSM, the above parameters, and the predicted secondary 
structure as input vectors. Then, the SASA values, secondary 
structure, PSSM, and parameters are used to predict torsion 
angles (τ0). Subsequently, the secondary structure for helical 
segments and β-sheets, to which incorrect torsion angles were 
initially assigned, is predicted using SASA, τ0 values obtained in 
the second stage, PSSM, and parameters (refinement procedure). 
The newly obtained secondary structures, along with SASA, 
PSSM, and the specified parameters, are used to predict new 
torsion angles (τ1). In the final stage, a neural network is used, 
the predictive ability of which was assessed using examples 
from the DSSP database. The authors chose PSSM, parameters, 
SASA, and τ1 as the feature input vector. Neural networks were 
trained using a reference set of structures consisting of 2640 
protein molecules obtained from the PISCES database 86 with 
homology not exceeding 25% (crystal resolution less than 3 Å), 
excluding molecules with a chain length exceeding 500 residues. 
Using test examples from CASP-9, it was demonstrated that the 
SPARKS-X algorithm can model three-dimensional structures 
of protein molecules, with the quality of modelling being 
comparable to that of ROSETTA. Results of the SPARKS-X 
algorithm can be found in a number of publications (see, for 
example, Refs 87 – 89).

3. AlphaFold algorithm

The AlphaFold algorithm has recently gained widespread 
recognition and attracted the attention of many specialists in the 
field of structural biology and bioinformatics. In 2023, the 
developers of this program, D.Hassabis and J.Jumper, were 
awarded the Lasker Award in the category of Basic Medical 
Research. The AlphaFold program, built on artificial intelligence, 
was trained on a large number of examples. Currently, two 
versions of the program are available. In December 2018, 
AlphaFold-1 ranked first in the overall CASP-13 competition. 
The program successfully tackled the task of predicting the 
spatial structures of proteins for which no template structures 
were available, despite partially similar amino acid sequences. 
In 2022, AlphaFold-2 won the CASP-14 competition: the 
program was able to relatively accurately model the three-
dimensional structure of 35% of proteins for which close 
templates were absent, and for 77% of proteins with available 
templates.52 The new version demonstrated higher accuracy 
compared to other similar algorithms and scored more than 90 
out of 100 possible points for two-thirds of the proteins in the 
GDT (global distance test), which is used to assess how 
accurately a three-dimensional protein structure has been 
predicted compared to experimental data. For 88 out of 97 
proteins, the AlphaFold-2 algorithm showed better results than 
other methods. In 2021, an article 52 was published (with more 
than 15 000 citations as of October 2023) describing the 
AlphaFold-2 algorithm along with open-source software and the 
corresponding database.

In the first stage of the AlphaFold-1 algorithm, the sequence 
of the protein of interest is aligned with the sequences of other 
proteins with known three-dimensional structures (multiple 
alignment). Next, using the coevolution matrix, pairs of amino 
acids forming key (conservative) interactions are analyzed. 
A high correlation corresponds to critical contacts and indicates 
that the amino acids are close to each other in three-dimensional 
space. In homologous proteins, such pairs remain unchanged or 
change synchronously. Unlike other programs, AlphaFold-1 
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predicts pairwise distances between Cβ atoms, providing discrete 
probability distribution densities for each amino acid in the form 
of matrices. A distance not exceeding 8 Å is used as the 
interaction threshold. The three-dimensional structure is 
reconstructed using a potential (analogous to a potential energy 
scoring function) dependent on the dihedral angles ψ and φ, 
pairwise positioning of Cβ atoms, and volume overlaps. 
Optimization of this function is achieved through gradient 
descent. The locations of Cα atoms are mechanistically 
determined from known C – Cα – N distances. Modelling is 
performed using a ResNet class convolutional neural network 90 
with a training sample of over 30 000 crystallographic structures. 
A key feature of AlphaFold is the structure of its input and 
output data.

Unlike AlphaFold-1, the end-to-end model AlphaFold-2 uses 
a transformer architecture with an ‘attention mechanism’. 
Training was conducted on 170 000 examples, which provided 
more accurate predictions in the CASP-14 framework and sped 
up the algorithm’s operation. For searching the closest 
homologues and aligning amino acid sequences, the program 
uses the HMMER method (hidden Markov models),91 based on 
Markov models (chains), and databases such as Uniprot and 
MGnify, while the HH-suite method 92 is used to search for the 
closest three-dimensional structures in the PDB database. Like 
AlphaFold-1, the new version operates with matrices of pairwise 
distances, but in the absence of a suitable template, it is filled 
with default values. The neural network receives a low-
dimensional continuous vector representation of the alignment 
and pairwise correspondence (vector representation) as input 
and iteratively improves their quality on deeper layers. As a 
result, the model returns the predicted three-dimensional 
structure of the protein.

AlphaFold-2 essentially consists of three modules: Evoformer 
(vector representation, computational block with trainable 
weights), the structural module (generation of three-dimensional 
structure), and OpenMM (optimization of atom coordinates–
system relaxation). The main neural network of AlphaFold-2 
predicts the positioning of the peptide backbone, while Deep 
ResNet outputs dihedral angles that describe the positions of 
amino acid side chains. The Noisy Student Training approach 
(semi-supervised learning) is used for training.93 In the initial 
stages of the system operation, all elements of the peptide 
backbone are placed at the origin, and then the coordinates are 
updated by the structural module, taking into account the 
information received from the IPA (invariant point attention) 
function. AlphaFold-2 uses the FAPE (frame aligned point 
error) as its loss function, which is independent of changes in the 
global coordinate system. In terms of operation and data 
processing logic, AlphaFold-2 is virtually indistinguishable 
from the first version, but the neural network architecture and 
the training algorithm itself have been significantly modified. 
This, in particular, considering the use of a large volume of 
training data and the coevolution matrix, has allowed 
AlphaFold-2 to take a leading position in the field.94

We did not intend to conduct a detailed comparison of 
algorithms and their neural network architectures for predicting 
the three-dimensional structure of protein molecules. A recent 
publication 95 presents the results of a comparative analysis of 
the AlphaFold-2 and RoseTTAFold algorithms and describes 
details of their architecture. For instance, it highlights the 
significantly higher efficiency of the two-track neural network 
architecture used in AlphaFold-2 compared to RoseTTAFold. 
Furthermore, as another distinguishing feature, the authors 
pointed out that the multiple alignment parameters are updated 

in AlphaFold based on pairwise characteristics through the 
direct attention mechanism, which provides a more accurate 
prediction of the spatial positioning of atoms. AlphaFold-2 
employs end-to-end training, updating all model parameters 
through the backpropagation of errors from the loss function, 
which is calculated from the three-dimensional coordinates after 
passing through several SE(3)-equivariant layers of the 
transformer neural network. More details on the algorithm 
features can be found in the supplementary materials to the 
mentioned article.

Although there are quite a few publications to date with 
examples of using the AlphaFold-2 algorithm for solving 
bioinformatics tasks,96 its application for the development of 
new small drug molecules, especially at the early stages, remains 
unexplored. To be successful, a modern medicinal chemist must 
have deep knowledge in areas such as organic synthesis, 
classical medicinal chemistry, and chemoinformatics. It was 
mentioned earlier that methods of molecular docking or MD 
(molecular dynamics) are often used to predict and understand 
the mechanisms of molecule binding to a chosen target, based 
on which a specialist can evaluate the potential of a small 
molecule and modify it to improve the affinity. This requires the 
three-dimensional structure of the protein molecule. Problematic 
are those cases when it comes to a protein for which no data on 
the three-dimensional structure are available and there are no 
closely related analogues. Considering that the researcher’s 
primary focus is precisely on the area of potential binding of a 
small molecule to the target, the question of how accurately the 
AlphaFold algorithm can predict the geometry of the binding 
site adapted for docking modelling remains open. Below, recent 
scientific publications are detailed, where the AlphaFold 
algorithm was applied with the aim of developing drug molecules 
and virtual screening.

4. AlphaFold exploitation for small drug 
molecule development

4.1. Virtual screening
Comparing the results of docking simulations obtained using the 
Glide module (see d and Ref. 97) with data from the DUD-E 
database (see e and Ref. 98) allowed for a preliminary assessment 
of the rationality and efficiency of using model structures 
available in AlphaFold for virtual screening (VS) in comparison 
with the use of crystallographic data. Within the scientific 
community, the DUD-E database, despite its shortcomings, is 
considered to be a standard set for conducting independent 
testing of computer models.99 As the subject of their study, 
Zhang et al.98 selected holo (in complex with a ligand) and apo 
(without a ligand) forms of proteins corresponding to the 
AlphaFold model and their optimized variants, which were 
obtained using the induced fit docking molecular dynamics 
(IFD-MD) protocol.f Two different forms (holo and apo) were 
chosen based on the premise that docking simulation results 
depend on the geometry and composition of the binding site, 
which in many cases differ for the mentioned forms.

IFD-MD is a separate module that combines traditional 
approaches and docking functions, pharmacophore analysis of 
the binding site, solvation assessment (WScore function), 

d https://www.schrodinger.com/ (access 28.03.2024).
e http://dude.docking.org (access 28.03.2024).
f https://newsite.schrodinger.com/platform/products/ifd-md / (access 
28.03.2024).
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sampling of amino acid side chains, and partially MD (molecular 
dynamics) methods to optimize the ligand position (modelling 
the induced fit mechanism) in its algorithm. The algorithm, 
which requires the presence of a template structure of the 
ligand – protein complex, was used, in particular, to obtain a 
greater number of holo-like structures based on apo-forms of 
AlphaFold protein models. It was noted that the MOE program g 
also implements similar functionality in the forced alignment 
mode. The authors 98 pointed out that their approach is applicable 
exclusively to protein models the binding site of which has the 
peptide backbone correctly positioned. The original AlphaFold 
models were compared with modified and optimized variants 
and with relevant experimental data. It was noted that docking in 
AlphaFold models for which experimental data on the three-
dimensional structure of protein molecules are not available 
does not guarantee the discovery of hit molecules. It was shown 
that the application of the IFD-MD method leads to a significant 
improvement in docking results according to the BEDROC 
enrichment coefficient.h However, the cited publication 98 
clarifies that all examples from the DUD-E database were 
already available in the PDB at the time of training the AlphaFold 
algorithm.

The DUD-E database contains structural information on 102 
protein molecules belonging to various families, including 
kinases, nuclear receptors, proteases, and others. For each class 
of targets, a set of active ligands and inactive structurally similar 
molecules is available. For analysis, a set of 40 proteins was 
used, for which both forms (holo and apo) are presented in the 
database, by analogy with the study by Im et al.100 Structures 
without analogues among the AlphaFold models for which only 
covalent ligands were indicated as targets were excluded from 
this set. After the filtering procedure, 27 proteins remained. 
Since for a number of objects, such as BRAF (B-Raf proto-
oncogene), EGFR (epidermal growth factor receptor), IGF1R 
(insulin like growth factor 1 receptor), ITAL (integrin α-L), and 
RXRA (retinoic acid receptor-А), the binding sites of 
AlphaFold-2 (AF2) are blocked by an excess of amino acids, an 
alignment of the primary sequence between the AF2 model and 
the holo-form was performed, and then peptide segments before 
the first and after the last amino acid in the sequence 
corresponding to the holo-form were removed.

These operations resulted in a sample of modified AlphaFold 
models more suitable for reproducing the docking. Then, for all 
proteins and complexes, a preprocessing procedure was 
conducted using the ProteinPreparation module, during which 
hydrogen atoms were added, missing peptide chains were built, 
and protonation was carried out in accordance with the PROPKA 
(protein pKa) algorithm at pH 7.4,101 considering functionally 
significant tautomeric forms of histidine. Next, hydrogen bonds 
were optimized and a potential energy minimization procedure 
for the entire protein molecule was conducted. Active and 
inactive ligands from the DUD-E database underwent a standard 
preparation stage using the LigPrep module, with a maximum of  

32 permissible starting conformations (default value). Cofactors 
and coenzymes that play a significant role in ligand binding and/
or structural stabilization of the binding site were positioned in 
the corresponding AlphaFold models based on alignment, and 
their positions were refined during minimization. Using the 
IFD-MD protocol, models of complexes (no more than 5 
different poses for each ligand) were obtained and used to 
perform docking simulation of active and inactive molecular 
structures. In some cases, the authors 98 used the PLDB module 
to select other reference molecules from the PDB database based 
on their structural similarity (Tanimoto metric, RDKit 
fingerprints) to the molecules associated with a specific target 
from the DUD-E set. Based on the results of molecular docking 
(Glide module, standard SP protocol, Table 2), one variant with 
the best scoring function was selected for each example. To 
compare the geometry of the binding sites (amino acids within 
no more than 5 Å from the ligand atoms were considered when 
calculating RMSD values) for holo- and apo-forms, as well as 
original and modified AlphaFold structures, the SiteMap module 
was used.

As a result, it was shown that the spatial geometry of the 
binding sites in AlphaFold structures resembles more closely the 
holo-forms (average RMSDbackbones were 1.48 and 1.17 Å, and 
RMSDside chains were 2.15 and 1.83 Å for apo- and holo-forms, 
respectively). From the data presented in Table 2, it is evident 
that when using modified models, the docking results are 
comparable with those for the apo-forms of proteins but are 
significantly inferior to the results for holo-forms, which is 
explained by the principle of induced fit and protein-specific 
features, examples of which can include the DFG-in/out and αC 
helix in/out conformations of the kinase binding site. The 
applicability of such models for the needs of standard virtual 
screening is quite limited. Comparative target-specific data for 
the same sample but with the addition of IFD-MD-optimized 
structures are presented in Fig. 1.

Based on the results, it can be concluded that holo- and apo-
forms with low RMSD values in the binding site area relative to 
the holo-forms yield the best docking results. A similar but less 
pronounced trend is observed for AlphaFold models. For 
example, in the RXRA protein molecule, the C-terminal helical 
segment is located inside the binding site, significantly affecting 
the docking results. Zhang et al.98 noted that in the case of 
modified AlphaFold models, incorrect ligand positioning results 
were due in part to incorrectly defined rotamers of amino acids 
lining the site. Docking results for holo-and apo-forms, as well 
as for modified AlphaFold models compared to their IFD-MD-

g https://www.chemcomp.com/Products.htm (access 28.03.2024).
h One of the most widely used tools for evaluating the performance of 
classification or ranking algorithms in statistics and machine learning 
are the receiver operating characteristic (ROC) curve and the area 
under the ROC curve (AuROC), which reflect the frequency of true 
positives and false positives. BEDROC is an ROC curve considering 
the Boltzmann distribution. When calculating BEDROC, the 
proportion of results that collectively provide 80% significance is set 
using the parameter α; this parameter also determines the requirements 
for the maximum allowable proportion of positive examples in the 
test at which the criterion does not reach saturation.

Table 2. Docking results of small molecule structures from the 
DUD-E database with protein binding sites (experimental data for 
holo- and apo-forms, corresponding AlphaFold model with native 
and modified structure).98

Models ROC BEDROC
 (a = 160.9)

EF (1%) 
(see † )

The proportion of 
active molecules 
based on docking 
results (%)

holo 0.804 0.407 22.4 97.3
аpо 0.696 0.193 10.4 95.3
AlphaFold 
native

0.621 0.206 11.0 82.4

AlphaFold 
modified

0.664 0.199 11.0 90.8

† EF (enrichment factor) is calculated for a small portion of the 
database — the most highly scored compounds (1%).102
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optimized variants, in which reference ligands were preliminarily 
placed after the alignment or docking procedure, are presented 
in Table 3. However, it was emphasized that the poses obtained 
during docking did not always correspond to the true ones. 
IFD-MD-optimized models showed results comparable to those 
for holo-forms (see Table 3), especially in the cases where the 
entire set of docking models was used (see above). The authors 
effectively demonstrated the efficiency of using the IFD-MD 
method in relation to the EGFR kinase, for which holo- and apo-
forms, as well as the modified AlphaFold model, were found to 
be unsuitable for docking construction. In particular, during 
optimization, different rotamers were obtained for the amino 
acid residues Met766 in the C-loop and Cys775, freeing additional 
volume in the site for ligand binding, while the Glu762 side chain 
was displaced from the site. Conformational changes occurred 
to Phe856 in the DFG segment [Asp(D) – Phe(F) – Gly(G), a 
conservative segment in the structure of kinase pockets] and 
Thr790 (the gatekeeper region). Together, these spatial changes 
allowed the overall geometry of the binding site to be 
approximated to the holo-form and, consequently, improved the 
docking results. Similar experiments were conducted using 
reference structures of active molecules with low structural 
similarity to the ligands used previously, improving docking 
results, although this experiment involved significant time and 
computational expenses. Additionally, an approach was 
proposed that considers the influence of cofactors and 
coenzymes.

Based on the experiments, Zhang et al.98 concluded that 
unmodified AlphaFold structures yield results in standard 
docking modelling similar to those for apo-forms, which are 
noticeably inferior to the results for holo-variants. However, the 
use of the IFD-MD method significantly improves the quality of 
prediction. The authors did not conduct virtual screening using 
this algorithm to search for potential ligands, which does not 
fully assess the capabilities of the described approach, 
particularly in the field of developing new hit molecules acting 
on targets that do not have close homologues among available 
experimental complexes.

Weng et al.103 used the AlphaFold model built for the protein 
WSB1 (WD repeat and SOCS box-containing protein-1) within 
the framework of virtual screening (VS) to search for inhibitors 
of its activity. This protein consists of seven WD40 domains 
(N-terminus) and one SOCS box (C-terminus). It promotes the 
growth and development of tumour cells by blocking the activity 
of the tumour suppressor protein pVHL and activating the 
transcription of the HIF-1α gene. The conducted virtual 
screening identified a number of compounds as potential ligands 
to the said protein, among which G490-0341 (1), G610-0188 
(2), Y043-6168 (3), and Y044-5019 (4) showed the best results 
in subsequent MD studies (Fig. 2). Programs AutoDock-GPU 
(Ref. 104) and GlideSP (Schrödinger, Maestro i) were used to 
model the docking of structures.

In the first stage, the AlphaFold model was preprocessed 
using the MOE program, QuickPrep module, where structural 
correction, addition of hydrogen atoms, removal of unbound 
water molecules, and energy minimization were performed, 
while in the Maestro program, ligand structure preparation was 
carried out using the LigPrep module. The peptide ligand D2 
(type 2 iodothyronine deiodinase) was used to identify the 
binding site using MD [binding pose meta dynamics (BPMD) 
method was applied]. The initial docking modelling was 
performed using the AutoDock-GPU program, with molecules 
from the ChemDiv collection j serving as the subjects of study. 
Based on the experiment results, more than 127 000 molecules 
with a scoring function not exceeding –10 kcal mol–1 were 
selected, which were then examined in a stepwise docking using 
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Figure 1. BEDROC enrichment coefficients for 27 targets. (1) holo-forms; (2) apo-forms; (3) modified AlphaFold models; (4) IFD-MD-opti-
mized models, experimental ligand position data used for template structure construction; (5) IFD-MD-optimized models, active molecule pose 
used for template structure construction obtained during docking. Group I represents examples where models 4 showed better results compared 
to models 3; Group II shows comparable results for models 1, 3, 4; Group III consists of models 3 and 4 with low prediction quality compared 
to holo- and/or apo-forms.98 The figure is published under CC BY-NC-ND 4.0 license.

Table 3. Docking results for different models.98

Models ROC BEDROC
(a = 160.9) EF (1%)

holo 0.814 0.439 24.2
apo 0.733 0.213 11.4
AlphaFold modified 0.728 0.236 13.1
IFD-MD-AlphaFold optimized
   best pose, alignment 0.799 0.300 16.8
   poses ensemble, docking 0.825 0.338 18.9
   best pose, docking 0.783 0.281 15.6
   poses ensemble, docking 0.817 0.325 18.0

i https://www.schrodinger.com/products/glide (access 28.03.2024).
j https://www.chemdiv.com/ (access 28.03.2024).
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the Maestro program. During the experiment, a maximum of 20 
possible poses with a Glide XP score £ –8.0 kcal mol–1 were 
obtained for each structure. Based on the modelling results, 20 
most promising structures were selected, for which the BPMD 
method was also applied to refine their poses. It was shown that 
compound 1 is capable of forming strong bonds with key 
residues Asp175 and Arg315, forming a stable complex. The 
authors 103 did not present the results of biological testing of the 
selected molecules, which does not fully assess the contribution 
of the AlphaFold model to the results of the described 
experiment.

Wong et al.105 used AlphaFold structures and docking 
modelling to predict the possible interaction between 296 E. coli 
proteins and 218 antibacterial molecules. The approach was 
validated for 12 proteins in vitro. The study results showed an 
average auROC value of 0.48, indicating low efficiency of the 
approach. Reassessment of docking poses using machine 
learning methods improved the model characteristics 
(auROC = 0.63 – 0.71). The quality of prediction varied 
depending on the used activity threshold and averaged 41 – 73%. 
A negative sample of 100 inactive molecules was used. In the 
first stage, the authors investigated the antibacterial activity 
(inhibition of E. coli K-12 BW25113 growth) for a library 
consisting of more than 39 000 molecules, which included 
known antibiotics as well as natural compounds and synthetic 
molecules with high structural diversity (molecular weight from 
40 to 4200 Da). Molecules were tested at a relatively high 
concentration (50 mM). Compounds that showed activity of at 
least 80% (218 molecules) were selected as hits, about 80% of 
which belonged to known classes of antibacterial agents, 
including β-lactams, aminoglycosides, tetracyclines, 
fluoroquinolones, etc. The docking procedure for the selected 

structures was carried out using AutoDockVina. As an 
independent in silico control, complexes available in the PDB 
database were used.

As a result, over 64 000 poses for active molecules and over 
29,000 for inactive ones were predicted. At threshold scoring 
function values of –7 and –5 kcal mol–1, respectively, 9.6 and 
31% of molecules were classified as active against at least three 
proteins, while out of 296 proteins, 178 and 216 proteins showed 
a likelihood of binding to at least three active molecules. For 
inactive compounds, these indicators were respectively 86 and 
99 molecules, and 137 and 204 proteins. Based on these results, 
it can be concluded that the model has a low classifying ability. 
In addition, the authors 105 assessed the predictive capabilities of 
the model using 142 antibiotic–target pairs described in the 
literature to replicate their binding mechanisms. However, 
unsatisfactory results were obtained in this case as well, 
regardless of the scoring function threshold. The quality of the 
model was studied based on in vitro testing results conducted for 
12 E. coli proteins, including DNA gyrase, primase, helicase, 
NAD+-dependent ligase, polymerase, guanylate kinase, mur 
family proteins, and others, for which test systems were available 
that allowed for the direct assessment of molecule binding to 
these proteins and their activity (Fig. 3).

In the biological experiment, it was found that 94 and 85 
compounds at a concentration of 100 mM showed inhibitory 
capability exceeding 50% against murA and DNA helicase, 
respectively. Conversely, the number of molecules acting on 
DNA ligase and murC was much lower, at 4 and 5, respectively. 
For all primary hit molecules, IC50 (half-maximal inhibitory 
concentration) values were experimentally determined. It turned 
out that 45 molecules showed nonspecific activity and could be 
classified as PAINS (pan-assay interference compounds). The 
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Figure 2. Structures of promising molecules, potential WSB1 inhibitors (a) and most likely binding mechanisms for molecules 1 and 3 based 
on MD results (b).103 The figure is published under CC BY 4.0 DEED Attribution 4.0 International license.
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proportions of correctly predicted hits were 59 and 30% with 
scoring function thresholds of –5 and –7 kcal/mol, respectively 
(Fig. 4 a). For false-positive molecules, this indicator was 66 
and 22% respectively (Fig. 4 b). These results indicate that the 
model efficiency was not significantly different from the 
efficiency of a model with randomly selected molecules for 
screening. The auROC value for the 12 proteins ranged from 
0.18 (murC) to 0.71 (gyrAB), with an average value not 
exceeding 0.5.

Similar results were obtained using auPRC (pose/ranking 
consensus). The authors 105 noted, in particular, that they 
observed no correlation between auROC (or auPRC) and 
pLDDT (predicted local distance difference test).52 A similar 
computational experiment was conducted using molecules of 
the same compounds the structures of which are available in the 
PDB database. However, no improvements in the prediction 
quality were established. Consequently, Wong et al.105 used 
another docking modelling method, namely DOCK6.9 
(Ref. 106) and evaluated the influence of several scoring 
functions based on machine learning models (Figs 4 c,d ): 
RF-Score,107 RF-Score-VS,108 PLEC score,109 and NNScore.110 
The results showed that the RF-Score, RF-Score-VS, and 
NNScore functions, applied to docking modelling results in 
AutoDockVina, significantly improved the average auROC 
values: 0.62, 0.63, and 0.58 respectively (across 12 proteins). 
Among the main conclusions, it was noted that AlphaFold-2 
models, having several drawbacks, including the inability to 

distinguish between active and inactive protein conformations,111 
in conjunction with docking modelling results (ligand is mobile, 
protein atoms are not) in a high-throughput virtual screening 
mode, do not provide a prediction quality sufficient for rational 
selection of molecules for biological testing.

Scardino et al.112 investigated the efficiency of high-
throughput docking (HTD) using AlphaFold models and 
corresponding crystallographic structures of 22 proteins. The 
analysis provided the conclusion that the original AlphaFold 
models used for this purpose were of low efficiency. In 
particular, the authors noted the important role of proper model 
preparation before the virtual screening (VS) stage. In the direct 
experiment, both AlphaFold models and crystals from the PDB 
database were not modified. Standard docking procedures used 
programs such as AutoDock-4, ICM, rDock, and PLANTS, 
which differ in algorithms and scoring functions. The efficiency 
of docking in the model was assessed using ECR (exponential 
consensus ranking) and PRC (pose/ranking consensus) 
approaches.113, 114 Before starting the experiment, the authors 
compared the AlphaFold models and their crystallographic 
analogues using pLDDT and three different RMSD values. For 
some models, the binding site was blocked by other parts of the 
protein, hindering correct docking. Nuclear receptors, for 
example, ESR1, ANDR, and PRGR, can exist in various 
conformational states, but in AlphaFold models, predominantly 
only one conformation corresponding to the agonist-bound state 
is realized. For such cases, correct PDB database analogues for 
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Figure 3. Predicted affinity matrix for 218 molecules and 12 bacterial proteins (a); results of primary biological testing (b); proportion of active 
molecules per single protein (c); proportion of proteins per single hit molecule (d ).105 The figure is published under CC BY 4.0 license.
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comparison were chosen. In the AlphaFold docking, the ICM 
program showed the best results, but overall, the prediction 
quality was low [EF1-ECR = 8.8 and EF-PRC = 8.9, 
HRavg = 0.16; EF1-ECR is average enrichment factor at 1% 
(EF1) by exponential consensus ranking; EF-PRC is average 
enrichment factor by pose/ranking consensus; HR is hit rate]. 
Many targets had EF < 3. For particular examples, the EF value 
was close to zero, with an average RMSD for ligand positions 
compared to docking results being 4.64 (in the case of 
cyclooxygenase-1, the RMSD was >10).

The docking results for ligands with AlphaFold models 
compared to crystals from the PDB database are presented in 
Table 4. It is evident that AlphaFold models are inferior to actual 
crystals, and this trend is characteristic of all four programs used 
for modelling. Comparable results were obtained for targets 
PRGR, PTN1, DRD3, and KITH, while for UROK, KPCB, 
ANDR, FABP4, ADRB2, and PYRD, modelling using PDB 
data showed better classifying ability, reflected in higher EF1-
ECR values. The RMSD value for template ligands in the case 
of actual crystals, unlike AlphaFold models, was significantly 
lower (RMSDavg = 1.25). As in other publications, it was noted 
that the quality of the peptide backbone positions for the selected 
proteins is generally comparable to experimental data. This is 
not the case for the positions of side chains, especially in the 
binding pocket area, which undoubtedly affects the quality of 
the prediction in the context of virtual docking.

Based on the conducted experiment, the authors 112 concluded 
that the original AlphaFold models are mostly unsuitable for 
typical docking procedures, and this correlates with the 
observations of other researchers,98, 115 but preprocessing of 

such structures generally improves the prediction quality. In 
particular, the crucial role of water at the ligand-binding interface 
was demonstrated using HSP90 as an example: the modelled 
solvent molecule positions allowed for an almost 8-fold 
improvement in RMSD between the true position and the 
docking result (RMSD values were 0.8 and 6.3 Å, respectively, 
in the presence and absence of water).

Hekkelman et al.116 described the AlphaFill method for the 
automatic preprocessing of AlphaFold models, specifically 
aimed at improving the quality of docking. The authors noted 
that AlphaFold models are not designed to predict the positions 
of molecules that do not structurally relate to the peptide 
backbone and amino acid side chains. For example, haemoglobin 
should be considered in a complex with heme, zinc fingers 
should be considered with zinc atoms; these cofactors or 
coenzymes provide many DNA-binding proteins with stability 
and functionally significant spatial organization. 
Metalloproteinases should be analyzed with metal atoms in the 
active site, which dictates their catalytic activity. Similar 
conclusions can be made for other classes of protein molecules, 
for example, kinases, in which the binding of ATP molecules 
determines the enzyme conformation. Such compounds and 
atoms were referred to as transplants. The proposed algorithm 
allows for the transfer of necessary structures into AlphaFold 
models in the cases where their direct analogues are found in the 
PDB database.

According to the statistical processing performed in the cited 
study,116 among the most frequently encountered transplants, 
one can highlight nucleotides (ATP, adenosine diphosphate, 
adenosine monophosphate, guanosine diphosphate, guanosine 

a b

d

c

–5 –7 –5 –7 –5 –7
kcal mol–1 kcal mol–1 kcal mol–1

Figure 4. Distribution of various categories of tested molecules depending on the threshold value of the scoring function (a – c); modelling re-
sults (represented by auROC values) obtained using different scoring functions (d ). The figure is published under CC BY 4.0 license.
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triphosphate, uridine-5'-diphosphate), cofactors [coenzyme-A, 
flavin adenine dinucleotide, flavin mononucleotide, glutathione, 
heme, nicotinamide adenine dinucleotide (NAD), pyridoxal 
phosphate, etc.], and metal ions (Ca2+, K+, Mg2+, Na+, Zn2+).

In the first stage, a search was conducted for template three-
dimensional protein structures meeting two criteria: homology 
of at least 25% and at least 85 aligned residues (using the 
BLAST algorithm in the LAHMA program). Information about 
cofactors was obtained from the CoFactor database.117 A total of 
2694 structures were transplanted, which accounted for 95% of 
all ligands (excluding xenobiotics) in the PDB database. Spatial 
alignment of complexes was performed using standard 
techniques according to the position of Cα atoms, with the 
quality of overlay being assessed by RMSD values. The protein 
atoms located within 6 Å of the cofactor position made up the 
transplantation area and were aligned separately. As a result, 
586 137 structurally modified AlphaFold models were obtained, 
with the total number of transplants exceeding 12 million. The 

initial validation of the AlphaFill algorithm was performed 
using proteins with 100% homology and the LEV (local 
environment validation) comparison function, which compares 
the cumulative RMSD of cofactors and the nearest amino acids 
in the obtained models with experimental data (Fig. 5 a). The 
results presented in Fig. 5 b indicate a relatively high correlation 
between LEV values and local RMSD. Overall, as expected, 
with increasing homology among amino acids that make up the 
pocket, the local RMSD decreases, despite a quite significant 
confidence interval (Fig. 5 c). Using scoring functions defined 
based on the overlap of van der Waals volumes of atoms for 
polyatomic molecules after transplantation (TCS is transplant 
clash score, Fig. 5 d ), it was shown that TCS values correlate 
with LEV function values (Fig. 5 e).116

For the optimization of complex geometry with high overlap 
coefficients (Fig. 5 f ), the authors 116 used the YASARA local 
minimization algorithm.118 It is noted that after minimization of 
complexes with original TCS values close to zero, there is a 

Table 4. Docking results for ligands with AlphaFold models (AF) compared to crystals from the PDB database.112

Target EF1-ECR 
PDB AF

EF-PRC Differences in the binding site structures of the AF model and the corresponding 
crystal from the PDB database PDB AF

ABL1 25.3 16.0 26.4 19.5 Asp 381 is directed inward towards the binding site. There are minor differences in the 
conformation of the glycine-rich loop

PNPH 37.1 18.6 34.9 17.9 Ser33 has differences in the position of the OH group, which is submerged 2.66 Å 
into the pocket

ADRB2 24.5  3.4 23.4  2.5 Minor changes in the side chains of Asn1293 and Ser1203

IGF1R 18.3  7.5 38.6 10.1 The DFG motif is located at the exit of the binding site. Gly1125 is positioned 4 Å 
away in the AlphaFold model.

CDK2 12.8 10.2 16.3 10.9 The side chains of Lys89 and Phe80 are directed inward towards the pocket, limiting 
its volume

COX1  3.4  1.3  5.8  2.5 The side chain of Phe518 is directed inward towards the pocket
PRGR  9.2 12.6 17.3 18.3 Trp755 is mirrored. There are differences in the position of the Gln725 side chain:  

the OH group is distanced by 2.45 Å
ANDR  9.0  0.0 13.5  0.0 Differences in the positions of the side chains of Gln711 and Thr877

LFA1 10.9 2.9 11.6  0.0 The α7 helix (Asp297 : 1306) is directed inward towards the binding pocket, limiting its 
volume

PTN1 29.5 29.5 23.9 21.3 The side chains of Asp48 and Asp181 are turned inward towards the pocket
UROK 25.9  2.5 47.0  2.5 The side chains of Asn322, Ser323, and Thr324 are directed inward towards the pocket 

(average RMSD = 2.28 Å).
FABP4 22.1  0.0 26.4  0.0 The side chain of Phe57 is directed inward towards the pocket  

(average RMSD = 1.6 Å).
KPCB 45.3 11.8 53.8 1.9 The C-terminal residues Cys622 : His636 are significantly shifted towards the binding 

site, altering its topology. The chain of Phe353 is located at the exit from the pocket
HSP90  0.0  0.0  0.0  0.0 Significant differences in the three-dimensional structure of the segment 

Asn106 : Gly137 near the pocket. The important water molecules for ligand binding are 
absent

ESR1 34.3  8.3 29.7 10.2 Minor differences in the conformation of the side chains of Met421 and His524 (shift 
towards the pocket)

DRD3  3.2 10.4  5.0  8.5 The side chain of Ser192 slightly extends out of the pocket. The radical of Trp369 is 
mirrored

KITH 22.1 22.1 20.0 20.7 Minor differences in the side chains of Arg53 and Arg61

PDE5A 17.0 10.3 23.2 14.4 The side chain of Tyr664 significantly exits the pocket, whereas in the experimental 
structure, it interacts with the amino acids of the binding site. The side chains of 
Gln817 and Met816 are inversely rotated

FA7 47.1 13.1 48.0 23.2 Differences in the positioning of Lys189

HXK4  5.5  1.1 15.2  0 The side chains of Ser64 : Phe66 are oriented towards the interior of the pocket, 
noticeably narrowing the space available for ligand binding. The side chain of Tyr214 
is also directed inward into the site

PYRD 27.7  3.6 25.5 3.34 Minor changes in the positioning of the Arg136 and Tyr147 side chains. The side chain 
of Leu68 is directed into the pocket, contrary to experimental data. The side chains of 
His56 and Thr360 are inverted
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slight increase in the overlap, characteristic of cases where the 
cofactor does not have nearby protein atoms after transplantation. 
Under the action of the force field, the site ‘compresses,’ which, 
considering the intermolecular components of the field, leads to 
partial overlap of atom volumes. In other cases, the minimization 
procedure significantly lowered the TCS values. An example of 
optimization using the AlphaFill algorithm for myoglobin is 
shown in Fig. 6. Besides myoglobin, examples of transplants for 
zinc-dependent sites and kinase enzymes were discussed in the 
same paper.116 Although the authors did not provide examples 
of algorithm validation in the context of docking of small 
molecules, it can be expected that in some cases, especially 
when the ligand affinity is, among other factors, determined by 
interaction with a cofactor, docking results will improve 
compared to the original model.

Liang et al.119 thoroughly investigated the role of JMJD8 as 
an oncogene, which belongs to the JMJD protein family 
containing the Jumonji C (JmjC) domain in its structure. Proteins 

of this family can catalyze histone demethylation, similarly to 
HDAC (histone deacetylase-3) (deacetylation) and KDM 
(lysine-specific demethylase) (demethylation). However, such 
enzymatic activity was not demonstrated for JMJD8, likely due 
to mutations in the JmjC domain, while the N-terminal domain 
provides JMJD8 localization in the endoplasmic reticulum, 
indicating its role in folding. Besides, JMJD8 directly interacts 
with partner proteins, such as PKM2, leading to accelerated 
glycolysis. Specifically, it was found that the expression of this 
gene correlates with immunosuppression, DNA repair, and the 
activity of the CD276 protein, which is involved in regulating 
the T-lymphocyte immune response. Although the authors did 
not detect demethylase activity of JMJD8 in any of the conducted 
tests, they observed an association with several methyltransferases 
of other types.

Analysis of the gene expression profile using the cMap 
program,120 particularly for the JMJD8 gene, in various tumour 
cells identified 26 molecules the impact of which induced 

a b c

d e f

Figure 5. Distribution of LEV scores for validation examples (N = 28 619), data for 408 transplants with LEV > 2.5 are not shown (a); correla-
tion between LEV values and local RMSD (b); dependence of binding site homology on local RMSD (c); assessment of volume overlap after 
transplantation (d ); TCS – LEV dependence (e); comparison of TCS before and after local minimization for several sets of transplants (50 per 
group) with different initial values of this parameter ( f ).116 The figure is published under the CC BY 4.0 license.

a b c

AlphaFold AlphaFill

Figure 6. Original structure of the 
AlphaFold model (AF-P02144) (a); un-
optimized positions of key histidine resi-
dues for heme structure positioning, with 
nitrogen atoms highlighted in blue (b); 
heme transplant in the AlphaFill model 
with CO2 and O2 molecules, carbon atoms 
highlighted in light blue, nitrogen atoms 
are in blue, and oxygen atoms are in red 
(c).116 The figure is published under the 
CC BY 4.0 license.
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statistically significant changes in the expression of this gene. 
Among these, 6 molecules were categorized as HDAC inhibitors. 
In this context, Liang et al.119 used the AlphaFold JMJD8 model 
for docking of four molecules [XMD-1150 (5), XMD-892 (6), 
genipin (7), and THM-I-94 (8), Fig. 7 a] to predict their potential 
direct binding to JMJD8. The docking procedure, identification 
of the potential binding site, and preprocessing were carried out 
using the Discovery Studio v4.5 program (LibDock module).k 
The modelling results (Fig. 7 b) showed that XMD-1150 and 
XMD-892 are incapable of interacting with the protein, while 
genipin and THM-I-94 demonstrated relatively high scoring 
functions (LibDockScore: 104.95 and 131.25, respectively).

Since the cited paper 119 does not provide detailed information 
about the specific features of the computer experiment and lacks 
experimental validation of the JMJD8-targeted mechanism of 
action for the selected molecules, assessing the role of the 
AlphaFold model in this work is quite challenging. It is worth 
noting that THM-I-94 contains a hydroxamic acid fragment 
typical of HDAC inhibitors, which interacts with the Zn2+ cation 
in the HDAC binding site, and the JMJD8 binding site visually 
resembles the catalytic site in the HDAC structure. This 
indirectly suggests the possibility that the molecule interacts 
with the studied protein. However, since, as mentioned earlier, 

the original AlphaFold models do not have cofactors in their 
structure, the docking results can be questioned if the authors 
did not perform a proper preprocessing procedure, which is not 
not mentioned in the cited publication.119

To discover new selective inhibitors of the enzyme OfHex1 
(O. furnacalis), which participates in the hydrolysis of terminal 
N-acetyl-D-hexosamine residues in N-acetyl-β-D-
hexosaminides, as insecticides, Satti et al.121 described an 
approach based on the AlphaFold model. This work is related to 
agrochemistry, but the approaches to studying the mechanism of 
action and initial optimization of the structure of primary hit 
molecules are similar to those used in medicinal chemistry. In 
the first stage, to obtain comparative characteristics, the authors 
used available information for the specified enzyme from three 
organisms — O. furnacalis, Homo sapiens, and T. pretiosum. 
For enzymes from the first two organisms, the required 
crystallographic data were found in the PDB database: 3NSN 
(2.10 Å) and 1NP0 (2.5 Å). According to analysis, the overall 
amino acid homology was 40.11%, and the all-atom 
RMSD = 1.21 Å. In the case of T. pretiosum, an AlphaFold 
model was used (pLDDT = 86.75), with the Molprobity score 122 
being 1.61 in the 92nd percentile (N = 27 675, 0 – 99 Å) and the 
volume overlap coefficient being 1.75 in the 99th percentile 
(N = 1784, all resolutions). The homology with the nearest 
experimental complex (5Y1B) is characterized by corresponding 
values of 36.41% and 0.75 Å. Then, crystal preparation was 
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Figure 7. Structures of potential JMJD8 inhibitors (a) and docking results for genipin (7) and THM-I-94 (8) in the AlphaFold model (b).119 The 
figure is published under the CC BY 4.0 license.

k https://www.computabio.com/discovery-studio-libdock-tutorial.
html (access 28.03.2024).
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carried out using the Maestro program, in particular, water 
molecules more than 5 Å away from the protein and ligand 
atoms were excluded from consideration, hydrogen atoms were 
added, and missing chain sections were built in the PRIME 
module. Complex minimization was performed using the 
OPLS4 force field.

Subsequently, the authors 121 compiled a library of 
commercially available molecules containing moieties typical 
of insecticides. In total, more than 20 000 molecules were 
selected, which underwent standard preprocessing using the 
LigPrep module. For each structure, no more than 32 starting 
three-dimensional representations were generated for docking 
(totaling 44 943 conformations). To validate the docking models, 
the authors predicted poses for ligands from the aforementioned 
crystals [TMG-chitotriomycin (9) and NAG-thiazoline (10) for 
3NSN and 1NP0, respectively]. It was shown that using the 
constructed models, the true poses of the mentioned ligands are 
reproduced (Glide score = −12.95 and −6.53 kcal mol–1 for 
O. furnacalis and Homo sapiens, respectively.) In the AlphaFold 
model for a berberine derivative (11), a Glide score of 
–6.12 kcal mol–1 was obtained (T. pretiosum) (Fig. 8 a). The 
predicted binding mechanisms of the mentioned ligands are 
presented in Fig. 8 b. For docking of experimental structures of 
potential ligands, the Glide module was used (XP mode, that is, 
extra precision), and for the three poses with the best Glide 
scores, the free binding energy was evaluated using the MM-
GBSA method (molecular mechanics with generalized Born and 
surface area).123 The MD method in the Desmond module 

(Schrödinger LLC) was then applied to refine the binding 
mechanism and optimize the potential energy (using the OPLS4 
force field), with the TIP3P scheme being used for water 
molecules, and system neutralization was achieved using Na+ 
ions. Details of this experiment can be found in the original 
publication.121 Ultimately, for each conformation, the 5 most 
probable MD results were selected. According to the modelling 
data (see Fig. 8 a), the active conformations for molecules 9 and 
10 correspond to experimental data, while for compound 11 
significant differences are observed, despite a high degree of 
spatial homology for the pockets.

As a result of docking of selected structures of potential 
ligands, 15 compounds (18 conformers) were identified, which 
are predicted to bind better than the control molecule 9 
exclusively to OfHex1 (Glide score £ –12.95 kcal mol–1). 
Examples of molecules with the best Glide scores (12 – 15) are 
presented in Fig. 9.

The optimal poses for all 18 conformers were analyzed using 
the MD method in two stages (5 and 40 ns). After the first stage, 
5 molecules were selected for which the RMSD over the 
trajectory did not exceed 3 Å. After the second stage, the greatest 
stability of complexes was predicted for three molecules — 9, 
13, and 15. The authors 121 did not provide the results of 
biological testing for the selected compounds, which does not 
allow for an assessment of the efficiency of their approach. 
Furthermore, no attention was given to the AlphaFold model, 
and possible reasons for the discrepancy in active conformations 
in the case of T. pretiosum were not explained.

N

OH

OH

OH

O

O

OH

HO

OH

S

N
H

H

O

N+

ON+

O

O

9 10

11

a b

 

Figure 8. Results of reproducing the three-dimensional geometry 
of active conformations of molecules 9 – 11 (for molecule 11, the 
reference pose was taken from crystal 5Y1B — O. furnacalis) 
(a) and predicted binding mechanisms for these molecules (b). In 
 Figure a, ligands from crystals are highlighted in blue, while con-
formations obtained during modelling are highlighted in purple, 
yellow, and orange. In Figure b, windows I, II, V show hydrogen 
bonds; windows III, IV, VI show hydrophobic contacts; hydrogen 
bonds are highlighted in red, hydrophobic contacts are green, aro-
matic contacts are blue, carbon π-interactions are indicated in pur-
ple, and donor π-interactions are in blue.121 The figure is published 
under the CC BY 4.0 license.
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Lokhande et al.124 used several AlphaFold models of viral 
proteins such as thymidylate kinase (A48R), DNA ligase 
(A50R), scaffolding protein D13 (D13L), palmitoylated EEV 
membrane protein (F13L), and bovine cysteine protease (I7L), 
to identify potentially active molecules against monkeypox 
virus (MPXV), which belongs to the Orthopoxvirus genus of the 
Poxviridae family. Recent studies have identified a significant 
homology (96.3%) between MPXV and the smallpox virus.125 
Therefore, the authors 124 selected the mentioned targets, for 
each of which, except A48R, known ligands exist: tecovirimat 
(ST-246) for F13L, TTP-6171 for I7L, rifampicin for D13L, and 
mitoxantrone for A50R. Preprocessing of the selected AlphaFold 
models was carried out using the Maestro program, following 
the standard protocol in the Protein preparation module. The 
SAVES (v6.0) program was used to construct Ramachandran 
plots, and the verification and analysis of three-dimensional 
structures were conducted in the ERRAT l and ProSA 
programs.126 The molecules for docking were selected from the 
ChemDiv collection, PubChem, and DrugBank databases. A 
total of more than 206 000 structures were selected, which, after 
filtering procedures [REOS (rapid elimination of swill) and 
PAINS (pan-assay interference compounds) filters], were 
reduced to 171 000. Preprocessing and generation of starting 
three-dimensional representations for the final set of structures 
were performed in the LigPrep module (standard settings, 
OPLS4 force field).

As a result, more than 349 000 three-dimensional structures 
were obtained, the affinity of which was assessed based on the 
docking results. The binding sites for reference molecules were 
determined by analysis described by Lam et al.127 and the results 
from the SiteMap module in the Schrödinger program (Fig. 10). 
To optimize the time and computational costs, the first stage of 
modelling was conducted in the high-throughput virtual 
screening mode and was followed by the application of the SP 
(standard precision) docking protocol for the top 10% of most 
promising compounds. In the final stage, for 10% of the most 
favourable conformations identified during the second stage, 
affinity was predicted in the XP mode. The likelihood of binding 
was assessed based on the Glide score. The stability of the 
predicted complexes and the affinity of ligands were analyzed 
using the MD method in the Desmond module, similar to what 
was done in the study cited above 121 (force field, OPLS 2005, 
cubic lattice 10 Å, 100 ns, TIP3P protocol, Nose-Hoover 

thermostat model, Martyna – Tobias – Klein barostat with 
isotropic coupling). Structural changes in the system were 
monitored based on RMSD and root-mean-square fluctuations 
of this parameter. Principal component analysis was used to 
visualize dynamic changes in the system. Complex energies 
were evaluated based on MM-GBSA calculations; the potential 
for interaction of molecules (virtual hits) with the binding site 
was assessed using calculations of the energies of the highest 
occupied and lowest unoccupied molecular orbitals, conducted 
using B3LYP and LDF functions 128 in the DMol3 module of the 
Discovery Studio program. The contribution of dispersion 
forces was calculated using DFT-D (dispersion-corrected 
density functional theory). AlphaFold models and corresponding 
pockets are presented in Fig. 10. In particular, the authors 124 
noted that the results published by Lam’s research group,127 
correspond to positions predicted in the SiteMap module. The 
main characteristics of the sites are presented in Table 5.

Based on the constructed Ramachandran plots, it was 
established that no more than 0.6% of amino acid residues 
(approximately 3 amino acids) in each model do not correspond 
to experimental data (except for I7L), with ERRAT scores 
[ERRAT is the cost function for non-bonded interactions 
between atoms (C, N, and O) in proteins] being 97.95, 91.47, 
85.31, 95.04, and 87.50% for A48R, A50R, D13L, F13L, and 
I7L, respectively. Docking results showed that reference 
molecules have higher Glide scores than the promising 
molecules (virtual hits) from the test sample (Fig. 11). It is seen 
that for control molecules, Glide scores range from –4.92 to 
–4.52 kcal mol–1, while for test molecules the maximum value 
of this parameter was –7.83 kcal mol–1 for molecule (I7L), and 
the minimum value was –11.27 kcal mol–1 (I7L, molecule 36). 
MD results showed that the predicted complexes for reference 
molecules (except for the A48R target, which used an apo form) 
and compounds 16 – 40 are relatively stable. The principal 
component analysis results for the obtained trajectories provided 
the conclusion 124 that the binding of the most promising ligands 
causes significant changes in the structure of the apo form of the 
studied proteins, which presumably prevents the formation of a 
stable active conformation. For all investigated potential ligands, 
the energy difference between the highest occupied and lowest 
unoccupied molecular orbitals ranged from 0.0385505 to 
0.2725508 eV, which, according to the authors, is related to the 
ability of molecules to interact with the pocket. Similar results 
were obtained using the DFT-D method. Like in several other 
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Figure 9. Examples of the most probable selective compounds capable of bind-
ing to OfHex1, based on docking using the MM-GBSA method.121 The figure is 
published under the CC BY 4.0 license.

l https://www.doe-mbi.ucla.edu/errat/ (access 28.03.2024).
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mentioned works, the cited study 124 does not provide biological 
testing results for the selected molecules.

Nussinov et al.129, 130 noted that the efficiency of using 
AlphaFold models depends on the task at hand, and their potential 
in fields such as the development of new drug molecules and 
medicinal chemistry is not fully clear for a number of reasons. 
Proteins are not static objects, especially near active sites, as is 
the case for many enzymes. Solvent molecules play an important 
role in the interaction of ligands with binding sites. Even single 
substitutions among the amino acids lining the pocket can have a 
significant impact on the affinity of small molecules. The authors 
emphasize that many enzymes exist in various states, citing 
kinases and 5-HT5A serotonin receptors as examples.

The reasons listed above, among other factors, do not allow 
AlphaFold structures to be considered as suitable models for 
conducting standard computer modelling procedures without 

additional modification. Researchers compare AlphaFold 
models to photographs, not to the living systems that proteins 
are complex dynamic entities whose degrees of mobility are far 
from being limited to two states (active and inactive). Identifying 
allosteric binding sites using AlphaFold models is likely the 
most challenging task, as allosteric sites may form only in 
certain states of the protein, for example, during interaction with 
a partner molecule, or depend on surrounding conditions, 
particularly pH. An example is the development of the allosteric 
inhibitor asciminib against the BCR-ABL1 oncoprotein for 
chronic myeloid leukemia.131 However, ligand binding to an 
allosteric pocket does not always guarantee a clear effect due to 
poorly predictable conformational transitions. For instance, 
inhibitors of integrins aIIbb3 and a4b1 stabilize the active 
conformation, demonstrating properties of partial agonists, 
which posed a serious problem during clinical trials.132
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Figure 10. Examples of AlphaFold models for 
corresponding proteins with the binding site area 
predicted by the SiteMap algorithm (highlighted 
in pink, while other regions are depicted in dif-
ferent colours representing the protein peptide 
chain). The figure was created by the authors 
based on published data.124

Table 5. Key parameters of predicted pockets.124

Target Druggable score † Site score † Site volume, Å3 The numbers of amino acid residues forming the binding site

A48R 0.99 1.03 396.51 13, 14, 15, 16, 17, 18, 19, 37, 38, 39, 41, 53, 61, 62, 64, 65, 68, 72, 92, 93, 97, 98, 
101, 102, 105, 107, 128, 129, 133, 134, 137, 142, 144, 145, 173, 175, 176, 177, 
180

A50R 1.07 1.02 181.45 5, 8, 9, 11, 12, 15, 85, 143, 146, 147, 150, 156, 157, 158, 159
D13L 1.06 1.03 1134.99 1, 2, 3, 5, 6, 9, 10, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33, 35, 

37, 39, 40, 41, 42, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 161, 162, 164, 165, 167, 
168, 169, 170, 171, 172, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 
228, 229, 230, 253, 480, 482, 483, 484, 486, 487, 488, 489, 491, 532, 537

F13L 1.04 1.01 444.53 52, 53, 55, 58, 86, 89, 112, 113, 114, 118, 120, 133, 135, 137, 139, 140, 144, 239, 
246, 247, 248, 249, 279, 281, 282, 283, 312, 314, 327, 329, 331, 333, 334, 338

I7L 1.04 1.01 502.50 1, 3, 4, 8, 138, 140, 168, 238, 239, 240, 241, 243, 258, 260, 261, 262, 263, 264, 
266, 275, 277, 278, 280, 281, 283, 284, 285, 286, 294, 295, 318, 319, 320, 321, 
322, 323, 325, 326, 328

† Parameters obtained in the SiteMap software (Druggable score is the score for pocket properties and Site Score is the overall pocket assessment); 
Druggable score (DScore) and SiteScore functions are based on the same equation parameters, but have different coefficients. Druggable score 
better characterizes the ability to bind to drug molecules.
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Considering the above, as one of the possible solutions to the 
listed problems, Nussinov et al.129, 130 suggested integrating 
information about functionally significant states of the protein 
into AlphaFold models, for example, about the kinase DFG-in/
DFG-out conformation, using pharmacophores for the inactive, 
typically more stable state of the protein, which in most cases is 
realized in AlphaFold models. The authors specifically 
mentioned a publication 133 discussing an approach that takes 
account of various states of GPCR proteins in the AlphaFold 
algorithm.

4.2. Design of novel small molecules

Recently, Ren et al.134 published the results of a study in which 
they managed to identify the protein CDK20 as a new potential 
target for the drug therapy of hepatocellular carcinoma using the 
PandaOmics program.135 In the absence of experimental data on 
the structure of the selected target, the authors applied the 
AlphaFold algorithm to construct its three-dimensional model. 
Using the generative platform Chemistry42,136 a series of new 
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structures of potential ligands was proposed, some of which 
were synthesized and tested in vitro. While selecting molecules 
for synthesis, the researchers also relied on the results of docking 
(Fig. 12). The most active compound was 41 (ISM042-2-001, 
dissociation constant Kd = 9.2 ± 0.5 μM, IC50 > 6 μM). The first 

experiment lasted 30 days; during this time, only 7 molecules 
were synthesized, six of which showed no activity. In the second 
stage of generation and synthesis, compound 42 (ISM042-2-
048) was obtained, showing better results in biological testing 
(Kd = 0.57 ± 0.26 μM, IC50 = 33.4 ± 22.6 nM). In the second 

Structures 31 – 40 
(the values in parentheses are scoring functions, kcal mol–1)
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Figure 12. Examples of the structure of CDK20 inhibitors (41, 42) and their closest known analogues: ASK1 kinase inhibitors (43, 44), and 
docking results (IC50 and Kd values are given in μM, Glide score values are in kcal mol–1); carbon atoms of the ligands are highlighted in green 
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stage, only 6 molecules were synthesized, two of which were 
active. Apparently, the introduction of a pyrazole moiety into 
the molecule significantly influenced the activity, which is not 
surprising considering the numerous examples in the 
development of kinase inhibitors, where such acceptor moieties 
interacted with the lysine (in this case, Lys88) amino group 
either directly or through bridging water molecules. In the test 
using the Huh7 cell line expressing CDK20, compound 42 
demonstrated relatively high activity (IC50 = 208.7 ± 3.3 nM), 
while the activity against HEK293 was 1706.7 ± 670.0 nM (IC50 , 
selectivity index SI = 8.2). The authors noted that the constructed 
three-dimensional model (AF-Q8IZL9-F1-model_v1) did not 
allow for a correct docking procedure and was manually 
modified, for example, the C-terminal section (Pro303 – Gly346) 
was removed. For modelling, from one to 302 amino acids were 
used, while the model corresponded to the DFG-in conformation, 
and the charged amino acids Asp87 and Glu90 were located in an 
area accessible to the solvent.

Ren et al.134 were the first to demonstrate the effectiveness of 
using AlphaFold to create new active ligands against a kinase not 
previously described as a potential target for the therapy of 
hepatocellular carcinoma. It is specified that the new target is 
considered to be a protein that is ‘targetable’ (without explaining 
the term), has the status of ‘new target’ in the PandaOmics 
program, has not been addressed in any clinical trials in the last 
three years, and is not a target for known approved drug 
molecules. This definition, in our opinion, does not fully 
correspond to the concept of a ‘new target.’ The term ‘targetable’ 
is interpreted differently by medicinal chemists, 
cheminformaticians, and clinicians. For example, from the 
perspective of clinical pharmacology, ‘targetability’ means that 
the protein and the drug molecule acting on it have proven 
themselves during clinical trials as an effective strategy in treating 
a specific disease with acceptable side effects and a suitable 
clinical outcome, which contradicts the authors’ definition. 
Moreover, the rationale behind the choice of a period during 
which no results of clinical research should be published (the last 
three years) is unclear. Likely, the authors 134 adhere to a definition 
appropriate in the field of medicinal chemistry, where ‘targetable’ 
means that examples of small molecules acting on the selected 
target are known, which de facto excludes the possibility of 
correctly applying the term ‘new target.’ Specifically, the cited 
paper 134 claims that molecule 42 contains a new fragment (based 
on the Tanimoto coefficient value) capable of binding to the 
hinge region, absent in known CDK20 inhibitors.

The metric mentioned for evaluating the novelty of structures 
is not typically used: novelty can only be assessed based on a 
thorough literature and patent search. The authors 134 have filed 
the patent application WO2023138412 (A1); however, close 
analogues of the presented structures were previously described 
as, for example, ASK1 kinase inhibitors (compounds 43 and 44, 
see Fig. 12).137 Essentially, in the structure of ISM042-2-048, 
there was an isosteric replacement of the phenyl group with a 
pyrrole ring while maintaining the inverted amide group while 
the pyrazole moiety, which in molecule 43 also contacts the 
lysine residue similarly to Lys88, was moved to the 7-position of 
the benzopyrimidine. However, docking results for ISM042-2-
048 show the pyrrole proton interacting with the carbonyl group 
of the peptide backbone of Ile10 through the formation of a 
hydrogen bond, absent in the case of the phenyl group. Given 
the above, it could be assumed that testing molecule 43 against 
CDK20 or compound 42 against ASK1 would provide a better 
evaluation of the uniqueness of the approach described by Ren 
et al.134

It should be noted that among the published crystallographic 
data, we discovered a co-crystal of the topological analogue 45 
(AZD-5438, a non-selective inhibitor of CDK kinases) 138 in 
complex with CDK2 kinase (PDB: 6GUH, crystal resolution 
1.50 Å). Alignment of 6GUH and AF-Q8IZL9-F1-model_v1 
showed that the pockets of CDK20 and CDK2 have high 
homology (Fig. 13). In the case of AZD-5438, the imidazole 
acceptor nitrogen provides interaction with the lysine residue 
through a water molecule. Given that Ren et al.134 did not 
present selectivity research results for ISM042-2-048, at least 
regarding the CDK kinase family, it can be speculated that 
comparable results could have been achieved using a simple 
homologous model. Despite the mentioned observations, in the 
studied research, the AlphaFold model allowed medicinal 
chemists, albeit not without expert modification of the modeled 
CDK20 structure, to develop hit molecules with inhibitory 
activity against CDK20 kinase.

Another study 139 reported by the same research group 
addresses the development of selective SIK2 kinase inhibitors 
using the AlphaFold model (selective SIK2 inhibitors are 
described in the literature, for example, ARN-3236, Ref. 140). 
Specifically, the authors compared their own homologous 
model, constructed based on the previously proposed binding 
mechanism of the non-selective SIK inhibitor MRIA9,141 using 
the AlphaFold model, while details of the reproduction of the 
homologous model are not provided. It is noted that when 
overlaying the two models, significant differences (7.58 Å) are 
observed in the P-loop (Asn30) in the binding sites (Fig. 14 a). 
We reproduced the homologous model in accordance with the 
methodology described by Tesch et al.,141 using the complex 
structure 7B30 as a template and the SWISS-MODEL program, 
and confirmed these differences.

Zhu et al.139 performed docking simulations for four known 
ATP-competitive inhibitors with both the constructed homologous 
model and the model obtained from AlphaFold (AF-Q9H0K1-
F1-model). It was indicated that the selected compounds interact 
with the hinge region; however, in the case of GLPG-3970 (46), 
the 3,4-dihydroisoquinolin-1(2H)-one moiety is located at the 
exit of the pocket (Fig. 14 b), unlike the docking results obtained 
using the AlphaFold model, where this moiety is located near the 
gatekeeper area, and the methoxy group occupies a pocket formed 
by amino acids in this region (Fig. 14 c).

We attempted to reproduce the reported results and conducted 
docking simulations of GLPG-3970 with both models. The 
constructed homologous model was not minimized and only 
underwent standard preprocessing, as was the case with the 
AlphaFold model. We precisely replicated the binding pose of 
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Figure 13. Spatial structure of the pockets of CDK20 (highlighted 
in yellow) and CDK2 (highlighted in grey) using molecule 45 as an 
example. Carbon atoms are marked in green, sulfur is in light yellow, 
oxygen is in red, and nitrogen is in blue. The figure was created by the 
authors based on published data.134 
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G-5555 in the SIK2 kinase binding site, but for GLPG-3970 in 
the case of the homologous model, we did not observe the 
differences indicated by Zhu et al.139 Key contacts with the 
hinge region are maintained, and the oxygen of the carbonyl 
group interacts with the lysine residue (Lys49). It is important to 
note that we obtained a similar pose for the hit molecule 46 
described previously139 (Fig. 14 d ). Conversely, poses where the 
dihydroisoquinoline moiety is located at the exit of the pocket 
were obtained precisely during docking simulations with the 
AlphaFold structure. It should be noted that based on MD 
results, the authors considered the pose close to the one that was 
a priority in our computational experiment using the simple 
homologous model, but with a different torsion angle relative to 
the bond connecting the dihydroisoquinoline and thiazole 
moieties. The main focus in the previous publication 139 is the 
interaction of the methoxy group with the gatekeeper area, 
which, in particular, correlates with the results of 
structure – activity relationship analysis presented in that study. 
However, it remains unclear why the AlphaFold model better 
describes the patterns observed in the biological experiment. As 

a result, we were unable to confirm the significance of the 
AlphaFold model in this study. Nonetheless, using the 
Chemistry42 program, structures of new active compounds 
were generated, among which 47 and 48 demonstrated 
comparatively high activity in vitro: IC50 = 23 and 0.7 nM, 
respectively. In particular, high selectivity was noted for 
molecule 48 (SI = 24 and 200 for SIK2/SIK1 and SIK2/SIK3, 
respectively). At a concentration of 100 nM, no comparable 
activity was observed against other ten kinases, including 
AMPK kinase. The authors explained this by the presence of the 
Thr96 residue in the gatekeeper area of this kinase (unlike 
methionine in the SIK2 structure), affecting the binding of the 
methoxy group.

Mendes et al.142 utilized the AlphaFold domain model of 
diacylglycerol kinase (DGK) and the molecular probe TH211 
(49) (Fig. 15), which is specific to tyrosine and lysine residues 
in the DGK active site (RF001-sites),143 to identify potential 
binding areas for small organic molecules across a range of ten 
DGK isoforms. To study this, chimeric DGK family proteins 
were created, incorporating the C1 domain (tandem C1A and 
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Figure 14. Visualization of the spatial overlay of the homologous model and the AlphaFold model (a), docking results of compound 46 with 
the homologous model (b) and with the AlphaFold model (c);139 docking results of molecules 46 and 47 with the model constructed by the au-
thors of this review (d, e). The methodology used for the construction is similar to that referenced in Ref. 139, which is also similar to that used 
by Tesh et al.141 Dashed lines highlight ligand fragments interacting with the gatekeeper region; atom labelling is the same as in Fig. 13. The 
figure was created by the authors of the review based on published data.139.
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C1B domains), which is responsible for regulatory protein – 
protein interactions with partner proteins and provides specificity 
towards the substrate (diacylglycerol). Biological experiments 
demonstrated that TH211 blocks the catalytic activity of all 
isoforms through covalent interaction, with binding sites being 
identified not only in the C1 domain. Using AlphaFold models, 
the authors then mapped pockets by tyrosine and lysine residues 
in all isoforms (for tyrosine and lysine residues, pLDDT > 70), 
including chimeric proteins. As a result, clusters containing 
modified amino acids were identified, for example, for DGKα 
(K384, K543, Y544, K547), DGKζ (K502, K516, K521, K593; 
K311, K473), DGKγ (K356, Y358, Y535, K542), and DGKδ 
(K271, K198, K337). Additionally, the close spatial arrangement 
of the C1 and catalytic domain in the DGKα structure predicted 
by AlphaFold correlates with experimental data. This approach 
provides structural information about potential small molecule 
binding sites to DGK family proteins and can be used for 
developing selective inhibitors. AlphaFold models have also 
been used by other authors for predicting binding sites, for 
instance, in the structures of phosphatase PPM1D/Wip1,144 
KRAS,145 andsacsin.146

Li et al.,147 using AlphaFold models for the protein PcOSBP 
(P. capsici), developed a series of new inhibitors – structural 
analogues of oxathiapiprolin (50 – 53) (Fig. 16), possessing 
fungicidal activity. As a control structure, the authors used 
crystallographic data (PDB: 1ZHY, 1.5 – 1.9 Å resolution) for 
the KES1 protein (Saccharomyces cerevisiae) from the 
aforementioned family with a low degree of homology (less 
than 30%) to PcOSBP in complex with ergosterol, cholesterol, 
and 7-, 20-, and 25-hydroxycholesterols. Sequence alignments 
were carried out using the MUSCLE Web program.m Initially, 
an AlphaFold model was built for the control protein, resulting 
in a comparatively low average RMSD (0.54 Å), based on which 
the authors concluded that the algorithm is suitable for modelling 
the spatial structure of PcOSBP. Despite somewhat contentious 

reasoning, using the MD method, the authors optimized the 
AlphaFold model in complex with oxathiapiprolin to achieve a 
stable conformation. For docking the synthesized compounds 
(both isomers), the LeDock program 148 was used. For each 
structure, 100 docking attempts were made, and the affinity of 
the ligands was assessed based on the LeDock score and visual 
analysis of the predicted interaction. The docking results are 
presented in Fig. 16.

It was shown that the binding mechanisms of the reference 
molecule and synthesized compounds coincide due to their high 
structural homology. Essentially, the authors 147 applied the 
scaffold hopping approach and modified the pyrazole moiety of 
oxathiapiprolin while preserving the key interaction with the 
lysine residue (Lys 703). The predicted binding energy values 
(ΔGPB) for R- and S-oxathiapiprolin were –24.73 and 
–24.59 kcal mol–1, respectively (the authors attributed the 
different values, in part, to the presence of a hydrogen bond with 
the Asn 767 residue in the case of the R-isomer). Comparable 
docking results were obtained for compound 53: ΔGPB = –23.37 
(R) and –22.32(S) kcal mol–1. Indeed, the R-isomer of 
oxathiapiprolin showed higher activity against P. capsici than 
the S-isomer 149 [EC50 = 0.17(R) and 0.66(S) μg L–1; EC50 is the 
half-maximal effective concentration], despite the relatively 
small difference in binding energies. The fungicidal activity of 
the synthesized molecules was investigated against P. capsici, 
Peronophthoralitchii (P. litchii), and P. infestans; at a 
concentration of 0.01 μg L–1, compound 51 demonstrated a 
weaker inhibitory effect than the control molecule: 28.15, 32.62, 
and 44.15% respectively. Compound 52 showed stronger 
activity at the same concentration, namely 94.93, 84.60, and 
95.9%, comparable to the activity of oxathiapiprolin. Compound 
53 more selectively inhibited the growth of the mentioned 
organisms at a similar concentration (99.19, 70.67, 87.11%), 
which was particularly associated with the ethyl group, which, 
according to docking results, could occupy the hydrophobic 
section of the binding site.
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Figure 15. Structure of TH211 (a) and visualization of binding sites in AlphaFold models (b). Domains C1A and C1B are highlighted in light 
blue, while the catalytic domain (DGKα and DGKξ regions) is highlighted in light green. Modified amino acids Lys and Tyr are shown in dark 
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is published under the CC BY 3.0 license.
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It should be noted that the authors 147 conducted field studies 
with compound 53, which demonstrated its high antifungal 
efficacy. This work relates to agrochemistry; however, the 
approaches to studying the mechanism of action and initial 
optimization of the structure of primary hit molecules are similar 
to those used in medicinal chemistry. In the described 
publication, the AlphaFold model allowed the authors to predict 
the possible binding mechanism of new molecules and analyze 
the structure–activity relationship. At the same time, the model 
was optimized using the MD method before the experiment, 
which essentially does not allow assessing its initial quality and 
efficiency for VS purposes. Likely, using a similar approach and 
a simple homologous model built for the target protein, similar 
results could have been achieved. The more so, because in the 
supplementary materials, the authors noted a high overall three-
dimensional homology both between the model and 1ZHY 
(RMSD = 0.54 Å) and in the pocket area (RMSD = 0.65 Å).

5. AlphaFold-latest: a new AlphaFold version

In late October 2023, there was an announcement about the 
successful work on a new version of the AlphaFold-latest 
program.n Specifically, validation results were presented for the 
module predicting the spatial position of ligands (small 
molecules) for various docking methods, including 
AutoDockVina, Gold, and DiffDock. It was shown that 
AlphaFold outperforms many docking modelling algorithms in 

prediction accuracy using the PoseBusters validation sample.150 
The test examples used by the authors were crystallographic 
complexes reported from May 2022 to January 2023, which 
were not included in the training set (a total of 8856 complexes 
after filtering procedures), while the model itself was trained on 
examples published before September 2019. The spatial overlay 
of pockets for RMSD calculation was done using protein atoms 
within 10 Å of ligand atoms. It was noted, in particular, that 
some problems with the correct placement of ligands in protein 
models were solved in the new version of the program using 
docking algorithms discussed in the literature.112, 151 However, 
the authors did not present results of comparison with the most 
commonly used commercial programs Glide and MOE 
(Fig. 17 a). The results of predicting protein – protein interaction 
in AlphaFold-latest, particularly for antibody – antigen pairs 
compared to the previous version (AlphaFold-2.3), are shown in 
Fig. 17 b. The accuracy of reproducing positions of nucleic acids 
and their three-dimensional structures, as well as comparison 
results with other methods, are reflected in Fig. 17 c. It is evident 
that AlphaFold-latest outperforms RoseTTAFold2NA 152 in 
accuracy but is slightly inferior to Alchemy_RNA2 (under 
CASP-15 conditions).153, 154 The results of reproducing covalent 
modifications are shown in Fig. 17 d. Examples demonstrating 
that in some cases, the AlphaFold-latest algorithm can predict 
the true pose of a ligand with good accuracy, unlike docking 
algorithms, are given in Fig. 18, and the results of validating 
AlphaFold-latest using various complexes are shown in Fig. 19.

For predicting protein – protein interactions and ligand –
protein complex structures, test examples were used that do not 
have direct analogues in the training data. In the case of 
protein – protein interactions, only those protein pairs were 
selected for which there were no training examples with a 

AlphaFold for PcOSBP with oxysterol
50

51

52 53

53(R) 53(S)

Ozathiapiprolin

a b c

d

Figure 16. Docking results of compounds 50 – 52 (highlighted in yellow and blue) (a);147 structures of compounds 50 – 53 (changes in molecule 
structure shown in red and green) (b); structure of the modelled PcOSBP-oxatiapiprolin complex (red colour corresponds to higher pLDDT 
values) (c); docking results of two isomers of compound 53 (R and S configurations shown in pale blue and pale yellow, hydrogen bonds are 
highlighted with red dashed lines) (d ). The figure is published under the CC BY-NC-ND 4.0 license.

n h t t p s : / / d e e p m i n d . g o o g l e / d i s c o v e r /
blog/a-glimpse-of-the-next-generation-of-alphafold / (access 
28.03.2024).
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homology greater than 40% (for the pair). For ligand – protein 
complexes (small molecules and glycans), the same homology 
threshold (40%) was used, combined with a Tanimoto coefficient 
of structural similarity for the molecules not exceeding 0.5. 

However, information on the homology of pockets, which could 
significantly contribute to predicting the resulting poses of small 
molecules, was not provided.

a b

c d

N N

N N
N N

N

N N

Figure 17. Validation results of AlphaFold-latest models. (a) Ligand positioning (428 complexes), (b) protein–protein interaction, (c) repro-
duction of the spatial position of nucleic acid within a radius of inclusion of 30 (R0), and (d ) accuracy in reproducing covalent ligand poses.o 

o https://deepmind.google/discover/blog/a-glimpse-of-the-next-generation-of-alphafold/ (access 28.03.2024).

PDB ID 7OCB
Best docking RMSD = 4.6 Å
AlphaFold-latest RMSD = 0.96 Å 

PDB ID 5SD5
Best docking RMSD = 4.5 Å
AlphaFold-latest RMSD = 0.92 Å 

PDB ID 7BLA
Best docking RMSD = 6.3 Å
AlphaFold-latest RMSD = 2.0 Å 

a b c

Figure 18. Examples of results from the AlphaFold-latest algorithm for ligand–protein complexes where correct poses could not be obtained 
using Vina and Gold.p 

p https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/a-glimpse-of-the-next-generation-of-alphafold/alphafold_latest_
oct2023.pdf (access 28.03.2024).
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For the second validation set, crystallographic data on 
complexes of proteins with ligands were used, excluding 
glycans, covalent ligands, ions, and other molecules not related 
to therapeutic agents. The experiment results are shown in 
Fig. 20, indicating that the algorithm can predict the poses of 
ligands for various proteins with comparatively high accuracy. 
It is clear that, in the foreseeable future, results with biological 
validation of the described approaches will emerge; such 
information is necessary to assess the effectiveness of predicting 
the affinity of small drug molecules.

6. Conclusion

Considering numerous scientific publications in high-impact 
journals and the results of regular CASP competitions, the 
AlphaFold algorithm can be considered a leader in the field of 

modelling three-dimensional structures of protein molecules. 
This algorithm is crucial for solving many bioinformatics tasks, 
including analyzing enzymatic reaction mechanisms and self-
regulation, profiling mutagenesis sites, modelling protein–
protein interactions, and processing X-ray crystallography data. 
However, most authors of the publications reviewed above 
agree that without preliminary preparation, AlphaFold models 
are limitedly suitable for medicinal chemists, especially for 
docking within typical VS. For example, based on the analysis 
of experimental results on reproducing true ligand poses,98 it 
was concluded that AlphaFold models are mostly unsuitable for 
VS; it was also noted that due to the peculiarities of training, 
such models resemble apo-forms of proteins, unlike holo-
variants, which showed better results during docking simulations.

Wong et al.105 concluded that using unmodified AlphaFold 
models for high-throughput virtual screening is ineffective due 

a b

N = 973 N = 536 N = 281 N = 114  N = 87   N = 50    N = 13  N = 4 N = 692 N = 262
Protein known (1)
ligand known (1)

Protein known (1)
ligand novel (2)

Protein novel (2)
ligand known (1)

Protein novel (2)
ligand novel (2)

Protein 
known (1)

Protein 
novel (2)

Figure 19. Validation of the AlphaFold-latest algorithm using ligands from the PDB database. (a) Small molecules, (b) ions; (1) complexes 
with homology to training examples >40% for proteins and Tanimoto coefficient >0.54 (2048 RDKit fingerprints) for ligands, (2) for examples 
in which hese parameters are <40% and <0.5, respectively (the average values for clusters are presented).r 

r https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/a-glimpse-of-the-next-generation-of-alphafold/alphafold_latest_
oct2023.pdf (access 28.03.2024).

a b

c d 

e  f

Figure 20. Results of predicting the poses of therapeu-
tic agents in their respective pockets. AlphaFold-latest 
protein models are highlighted in blue, small molecule 
poses are light brown, and crystallographic data are in 
grey. (a) LGK974 in the PORCN-WNT3A binding site 
(PDB: 7URD, RMSD = 0.39 Å); (b) (2S,5S,6S)-2,6-
bis(azanyl)-5-oxidanyl-7-sulfooxyheptanoic acid in com-
plex with AziU3/U2 (PDB: 7WUX, RMSD = 1.19 Å); 
(c) closthioamide in complex with CtaZ (PDB: 7ZHD, 
RMSD = 2.22 Å); (d ) sanguinarine-A analogue covalent-
ly bound to KRASG12C in complex with immunophilin 
CYPA (PDB: 8G9Q, RMSD = 0.80 Å, the covalent bond 
is not defined); (e) NIH-12848 analogue in the allosteric 
site of PI5P4Kg (PDB: 7QIE, RMSD = 0.85 Å); ( f ) GdmN 
in complex with macrocyclic 20-O-methyl-19-chloropro-
ansamitocin and cofactor (PDB: 7VZN, RMSD = 1.02 Å).s 

s https://storage.googleapis.com/deepmind-media/Deep-
Mind.com/Blog/a-glimpse-of-the-next-generation-of-al-
phafold/alphafold_latest_oct2023.pdf (access 28.03.2024).
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to their low classifying ability. The models showed results 
comparable to those obtained with a random set of molecules at 
the biological screening stage. Scardino et al.114 also pointed out 
the unsuitability of AlphaFold models for dockingsimulations. 
Better results were obtained using experimentally determined 
spatial structures of proteins, and this trend is characteristic of 
different docking methods. The Heckelmann’s research group 116 
concluded that AlphaFold models are not designed to predict the 
positions of molecules unrelated to the peptide backbone 
structure, including cofactors, non-protein coenzymes, and 
small molecules. Other studies reviewed in this overview 
demonstrated that even when the overall homology of the 
modelled site does not significantly differ from the 
experimentally established one, it is possible to obtain positions 
significantly different from the true ones. Clearly, depending on 
the conditions in protein molecules, atoms do not occupy static 
positions, and the conformation of the protein capable of binding 
a ligand is realized in a single or a limited number of cases, 
which, in particular, was noted by Nussinov et al.,129, 130 who 
compared AlphaFold models to photos.

Based on the above, it can be asserted that AlphaFold models 
predict the positions of the peptide backbone atoms and the 
overall packing with relatively high accuracy, including those 
for protein molecules for which no close homologues are 
available. The same cannot be said about the positions of the 
amino acid side chain atoms lining the pocket, and this fact is 
critical for modelling the interaction of the ligand with the 
protein target. Despite this, in experiments for predicting the 
possible binding site and its geometry, AlphaFold models show 
better results than homologous models.151 However, replacing 
just one amino acid in the binding site or incorrectly modelled 
positioning of its atoms can lead to a complete loss of ligand 
affinity. In some cases, irregular protein fragments are located in 
the binding sites of AlphaFold models, which almost entirely 
preclude the possibility of obtaining adequate docking simulation 
results. It must be noted that many publications do not provide 
results of biological testing of selected molecules, which does 
not allow for a full assessment of the applicability limits of such 
models in the early stages of new drug development.

Frequently, the use of standard homologous models for 
proteins with a high degree of homology in the binding site area 
leads to comparable and even better modelling results, as pointed 
out by Karelina et al.151 Many researchers believe that the 
optimization of AlphaFold models in complex with ligands 
using molecular dynamics methods or in a flexible docking 
mode, where the positions of both ligand atoms and amino acids 
are refined in the force field gradient, can lead to computational 
models with higher predictive capability compared to unmodified 
AlphaFold models. However, such approaches require 
significant time and computational resources and also do not 
guarantee that the complex chosen as a result of modelling 
would adequately reflect the molecular mechanism of binding.

It is particularly important to note that for a medicinal 
chemist, the only and absolute measure of effectiveness for 
any computational approach is exclusively the results of 
biological validation. In this context, methods and algorithms 
are being developed that can automatically adapt AlphaFold 
structures for high-throughput docking. Specifically, we have 
proposed an algorithm called AlphaFoldOptimizer, based on 
machine learning methods, which allows predicting optimal 
positions of protein atoms in the binding site area and provides 
optimized three-dimensional models suitable for correct 
dockingsimulations (a corresponding publication is currently 
being prepared).

Despite the obvious drawbacks of AlphaFold models, there is 
no doubt about the rationale for using them in the development 
of new small medicinal molecules. Many researchers agree that 
the near future will see modified algorithms based on such 
models, for example, an improved version of AlphaFold (see 
Section 5), adapted for effective VS tasks, enriching the arsenal 
of the modern medicinal chemist with new useful tools.

7. List of abbreviations and designations

ABL1 — Abelson murine leukemia viral oncogene 
homolog-1 (ABL1 tyrosine kinase),

ADRB2 — β2 adrenergic receptor,
AMPK — 5'-AMP-activated protein kinases (serine/

threonine AMP-activated protein kinase),
ANDR — androgen receptor,
ATP — adenosine triphosphate,
auPRC — area under the precision – recall curve (precision 

and recall metric),
auROC — area under the ROC curve,
AziU3/U2 — aziridine synthase (Streptomyces sahachiroi),
BRAF — B-Raf proto-oncogene (serine/threonine kinase),
CASP — critical assessment of protein structure prediction,
CDK20 — cyclin-dependent kinase-20,
CDK2 — cyclin-dependent kinase-2,
CtaZ — GyrI-like protein polythioamide-binding protein,
CYPA — peptidyl-prolyl cis – trans isomerase A,
COX1 — cyclooxygenase-1,
DFT-D — dispersion-corrected density functional theory,
DFG — asp(D)-Phe(F)-Gly(G) (a conservative segment in 

the structure of kinase pockets),
DGK — diacylglycerol kinases,
DGPB — predicted binding energy,
DOOP — docking decoy-based optimized potential,
DRD3 — dopamine receptor D3,
EF — average enrichment factor,
EFS — evaluation function score,
EGFR — epidermal growth factor receptor,
ESR1 — estrogen receptor,
FABP4 — adipocyte fatty acid-binding protein-4,
FA7 — coagulation factor VII,
GdmN — carbamoyltransferase,
GPCR — G protein-coupled receptors,
HDAC — histone deacetylase-3,
HIF-1α — hypoxia-inducible factor 1α,
HSP90 — heat shock protein 90 homologue,
HXK4 — hexokinase-4,
IC50 — half-maximal inhibitory concentration,
IGF1R — insulin-like growth factor 1 receptor,
ITAL — integrin α-L,
JMJD8 — JmjC domain-containing protein 8,
KDM — lysine-specific demethylase,
KES1 — oxysterol-binding protein homologue-4,
KPCB — protein kinase C beta-type,
KITH — cytosolic thymidine kinase,
KRAS G12C — GTPase KRas (G12C mutation),
LBDD — ligand-based drug design,
LEV — local environment validation,
LFA1 — lymphocyte function-associated antigen-1,
LOMETS — Local meta-threading server,
MD — molecular dynamics,
MM-GBSA — molecular mechanics with generalized Born 

and surface area,
MOE — molecular operating environment,
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MW — molecular weight,
NAD — nicotinamide adenine dinucleotide,
OfHex1 — chitinolytic β-N-acetyl-D-hexosaminidase,
PDB — protein data bank,
PDE5A — cGMP-specific 3’,5’-cyclic phosphodiesterase,
PcOSBP — oxysterol binding protein, PKM2 – Pyruvate 

kinase type-2,
pLDDT — predicted local distance difference test,
PORCN-WNT3A — the complex of porcupine 

O-acyltransferase and Wnt family member-3A,
PI5P4Kg — phosphatidylinositol 5-phosphate 4-kinase-g,
PRGR — progesterone receptor,
PTN1 — phosphatidylinositol-3,4,5-trisphosphate 

3-phosphatase,
PYRD — mitochondrial dihydroorotate dehydrogenase,
pVHL — Von Hippel-Lindau disease tumour suppressor,
PNPH — purine nucleoside phosphorylase,
Q3 — a calculated parameter reflecting the accuracy of 

secondary protein structure prediction,
R2 — coefficient of determination,
RXRA — retinoic acid receptor-A,
SBDD — structure-based drug design,
SI — selectivity index,
SIK2 — salt inducible kinase-2,
UROK — urokinase-type plasminogen activator,
VS — virtual screening,
t and t0 — intermediate values of torsion angles,
φ and ψ — torsion angles.
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