Quantum dots: modern methods of synthesis and optical properties
Andrey A. Rempel
1, 2
*
Ilya A. Weinstein
1, 2
*
Andrei V. Naumov
5, 6, 7
*
Ivan Yu. Eremchev
6, 7
*
Cite this
GOST
Cite
GOST
Copy
Andrey A. Rempel et al. Quantum dots: modern methods of synthesis and optical properties // Russian Chemical Reviews. 2024. Vol. 93. No. 4. RCR5114
GOST all authors (up to 50)
Copy
Andrey A. Rempel, Oleg V. Ovchinnikov, Ilya A. Weinstein, Svetlana V. Rempel, Yulia V. Kuznetsova, Andrei V. Naumov, Mikhail S. Smirnov, Ivan Yu. Eremchev, Alexander S. Vokhmintsev, Sergey S. Savchenko Quantum dots: modern methods of synthesis and optical properties // Russian Chemical Reviews. 2024. Vol. 93. No. 4. RCR5114
|
RIS
Cite
RIS
Copy
TY - GENERIC
DO - 10.59761/RCR5114
UR - https://rcr.colab.ws/publications/10.59761/RCR5114
TI - Quantum dots: modern methods of synthesis and optical properties
T2 - Russian Chemical Reviews
PB - Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
AU - Rempel, Andrey A.
AU - Ovchinnikov, Oleg V.
AU - Weinstein, Ilya A.
AU - Rempel, Svetlana V.
AU - Kuznetsova, Yulia V.
AU - Naumov, Andrei V.
AU - Smirnov, Mikhail S.
AU - Eremchev, Ivan Yu.
AU - Vokhmintsev, Alexander S.
AU - Savchenko, Sergey S.
PY - 2024
SP - RCR5114
IS - 4
VL - 93
ER -
|
BibTeX
Cite
BibTeX
Copy
@misc{2024_Rempel,
author = {Andrey A. Rempel and Oleg V. Ovchinnikov and Ilya A. Weinstein and Svetlana V. Rempel and Yulia V. Kuznetsova and Andrei V. Naumov and Mikhail S. Smirnov and Ivan Yu. Eremchev and Alexander S. Vokhmintsev and Sergey S. Savchenko},
title = {Quantum dots: modern methods of synthesis and optical properties},
month = {may},
year = {2024}
}
|
Publication views
439
Graphical abstract
Keywords
Abstract
1. Introduction
2. Synthesis of quantum dots
2.1. At the roots: discovery of quantum dots and first results
2.2. Synthesis of QDs in a solid matrix
2.2.1. Glass melt quenching
2.2.2. Sol – gel method
2.2.3. Ion implantation
2.2.4. Ion exchange method
2.2.5. Femtosecond laser irradiation
2.3. Synthesis of QDs in colloidal solutions
2.3.1. Nonaqueous synthesis of QDs
2.3.2. Aqueous synthesis of QDs
3. Optical properties of colloidal quantum dots
3.1. Quantum size effect in optical absorption
3.2. Quantum size effect in luminescence
3.3. Specific features of exciton dynamics
3.4. Temperature behaviour of spectral parameters
3.5. Photonics of single quantum dots
3.5.1. Photoluminescence blinking
3.5.2. Photon antibunching
3.5.3. Spectral diffusion
3.5.4. Raman spectra of single QDs
3.5.5. Fluorescence nanoscopy of single QDs
4. Some applications of quantum dots
4.1. Biology and medicine
4.2. Luminescent nanothermometry
4.3. Quantum technologies: photon sources and detectors and memristor structures
5. Conclusion
6. List of abbreviations and symbols
Acknowledgements
References
1.
\[ \begin{equation}
E_{i+1}-E_i>k T
\end{equation} \]
2.
\[ \begin{equation}
E_g^{e f f}=E_g+\frac{\hbar^2 \pi^2}{2 \mu R^2}
\end{equation} \]
3.
\[ \begin{equation}
\alpha \propto \delta_{n, n^{\prime}} \boldsymbol{\delta}_{l, l^{\prime}} \boldsymbol{\delta}_{m-m^{\prime}} \boldsymbol{\delta}\left(E_{p h}-E_g-\frac{\hbar^2 k_{n, l}^2}{2 \mu}\right)
\end{equation} \]
4.
\[ \begin{equation}
\hbar \omega_{1,0}=E_g+\frac{\hbar^2 \pi^2}{2 \mu R^2}
\end{equation} \]
5.
\[ \begin{equation}
E_g^{e f f}=E_g+\frac{\hbar^2\pi^{2}}{2 R^2 \mu}-\frac{1.8 e^{2}}{\varepsilon R}
\end{equation} \]
6.
\[ \begin{equation}
E_g^{\text {eff }}=E_g+\frac{\hbar^2 \pi^2}{2 R^2 \mu}-\frac{1.8 e^2}{\varepsilon R}-0.248 \frac{\mu e^4}{2 \varepsilon^2 \hbar^2}
\end{equation} \]
7.
\[ \begin{equation}
H=\frac{d E_g^{e f f}}{d r} \Delta r
\end{equation} \]
8.
\[ \begin{equation}
\begin{aligned}
& \mathrm{CdTe}: d= 9.8127 \cdot 10^{-7} \cdot \lambda^3-1.7147 \cdot 10^{-3} \cdot \lambda^2+1.0064 \cdot \lambda-194.84 \\
& \mathrm{CdSe}: d=1.6122 \cdot 10^{-9} \cdot \lambda^4-2.6575^{-6} \cdot \lambda^3+1.6242 \cdot 10^{-3} \cdot \lambda^2-0.4277 \cdot \lambda+41.57 \\
& \mathrm{CdS}: d= -6.6521 \cdot 10^{-8} \cdot \lambda^3+1.9557 \cdot 10^{-4} \cdot \lambda^2-9.2352 \cdot 10^{-2} \cdot \lambda+13.29
\end{aligned}
\end{equation} \]
9.
\[ \begin{equation}
E_g^{e f f}-E_g=4.8366 \cdot d^{-2.1525}-0.0959
\end{equation} \]
10.
\[ \begin{equation}
E_g^{\text {eff }}=0.41+\frac{0.96}{R^2}+\frac{0.085}{R}
\end{equation} \]
11.
\[ \begin{equation}
E_g^{\text {eff }}=0.41+\frac{1}{0.252 d^2+0.283 d}
\end{equation} \]
12.
\[ \begin{equation}
E_g^{\text {eff }}=0.41+\frac{1}{0.0392 d^2+0.114 d}
\end{equation} \]
13.
\[ \begin{equation}
E_g^{e f f}=0.064+\frac{1.566}{R^2}
\end{equation} \]
14.
\[ \begin{equation}
E_g^{e f f}=0.4554 R^{-1.411}+1.056
\end{equation} \]
15.
\[ \begin{equation}
\hat{H}_{exch}=-2 / 3 \varepsilon_{\text {exch}} \cdot a_0^3 \delta\left(\vec{r}_e-\vec{r}_h\right) \cdot(\hat{\sigma} \cdot \hat{J})
\end{equation} \]
16.
\[ \begin{equation}
\Delta=\Delta_{\text {int }}+\Delta_{\text {asym }}\left(\beta_{\mathrm{m}}, \gamma, R\right)
\end{equation} \]
17.
\[ \begin{equation}
\Delta E^{s s}=0.4973 \cdot E_g^{e f f}-0.5648(\mathrm{eV})
\end{equation} \]
18.
\[ \begin{equation}
\hbar \omega_{h u m}^{d a}=E_g+\frac{\hbar^2 \pi^2}{2 m_e^* R^2}+\frac{\hbar^2 \pi^2}{2 m_h^* R^2}-E_d-E_a+\frac{e^2}{\varepsilon\left|\vec{r}_d-\vec{r}_a\right|}
\end{equation} \]
19.
\[ \begin{equation}
I(t)=\exp \left[-\frac{t}{\tau_0}\right] \cdot \exp \left[-A \sqrt{\frac{t}{\tau_0}}\right]
\end{equation} \]
20.
\[ \begin{equation}
I(t)=\exp \left[-\frac{t}{\tau_D}\right] \cdot \exp \left[-m \cdot\left(1-\exp \left[-k_q \cdot t\right]\right)\right]
\end{equation} \]
21.
\[ \begin{equation}
E_g(T)=E_g(0)-\beta T
\end{equation} \]
22.
\[ \begin{equation}
E_g(T)=E_g(0)-\frac{\alpha_1 T^2}{\alpha_2+T}
\end{equation} \]
23.
\[ \begin{equation}
E_g(T)=E_g(0)-A_F\left\langle n_s\right\rangle
\end{equation} \]
24.
\[ \begin{equation}
\beta_{\infty}=A_F \frac{k}{\hbar \omega}
\end{equation} \]
25.
\[ \begin{equation}
\begin{aligned}
& \alpha_1=A_F \frac{k}{\hbar \omega} \\
& \alpha_2=\frac{\hbar \omega}{2 k} \\
& A_F=2 \alpha_1 \alpha_2
\end{aligned}
\end{equation} \]
26.
\[ \begin{equation}
E_g(T)=E_g(0)-U_1 T^{U_2}-U_3 \hbar \omega\left[\operatorname{coth}\left(\frac{\hbar \omega}{2 k T}\right)-1\right]
\end{equation} \]
27.
\[ \begin{equation}
E_{g}(T) = a – z(1 + 2\langle n_s\rangle)
\end{equation} \]
28.
\[ \begin{equation}
E_g(T)=E_g(0)-\frac{\chi \Theta}{\exp (\Theta / T)-1}
\end{equation} \]
29.
\[ \begin{equation}
E_{g}(T) = E_{g}(0) – 2S_{hr}\hbar \omega \langle n_s\rangle
\end{equation} \]
30.
\[ \begin{equation}
w(T)=w_0+\Delta_w(T)
\end{equation} \]
31.
\[ \begin{equation}
\Delta_w(T)=\sigma T+A_b\left[\exp \left(\hbar \omega_b / k T\right)-1\right]^{-1}
\end{equation} \]
32.
\[ \begin{equation}
H(X, T)=w_0+\Delta_I(X)+\Delta_T(X, T)
\end{equation} \]
33.
\[ \begin{equation}
\begin{aligned}
& I(T)=I_0 \eta\left(T, E_q\right) \\
& \eta\left(T, E_q\right)=\left[1+p \exp \left(-\frac{E_q}{k T}\right)\right]^1
\end{aligned}
\end{equation} \]
34.
\[ \begin{equation}
I(T)=I_0 \int_0^E \eta\left(T, E_q\right) f\left(E_q\right) d E_q
\end{equation} \]
35.
\[ \begin{equation}
\sigma_{X, Y}=\left[\left(\frac{\sigma_{\mathrm{PSF}}^2+\xi^2 / 12}{N}\right)\left(\frac{16}{9}+\frac{8 \pi \sigma_{\mathrm{PSF}}^2 \varphi^{\underline{2}}}{\xi^2 N}\right)\right]^{1 / 2}
\end{equation} \]
Table 1
\[ \]
Table 2
Figure 1
Most frequently encountered types of QDs: (a) epitaxial QDs; (b) QDs in glass; (c) QDs passivated by organic molecules: colloidal QDs; (d) colloidal QDs in polymers; (e) QDs in reverse micelles; (f) core/shell colloidal QDs.
Figure 3
Key routes of passivation and functionalization of colloidal QDs by covalent bonding (а), hydrogen bonding (b), secondary functionalization (c) and dipole–dipole interactions (d).
Figure 4
Basic diagram of the MX type QDs (M = Cd, Cu, Pb; X = S, Se, Cl, Br, Te) synthesis in the glass matrix. After quenching, glass is a colourless transparent matrix with uniformly distributed metal (M) and chalcogen (X) ions. The additional heat treatment at temperatures near or above the glass transition temperature Tg leads to the formation and growth of QDs.
Figure 5
Figure 6
Basic diagram of QD synthesis by the high-temperature method proposed by Murray, Norris and Bawendi. In the first stage (1), a source of chalcogen ions (Х) is injected into a solution of metal ions (M) at high temperature (Т1). This induces fast formation of QD nuclei in the second stage and a decrease in temperature (down to Т2), which terminates further growth. The subsequent temperature rise (up to T3) in stage 3 initiates the growth of the nuclei, which is controlled by the duration of heating at the chosen temperature. TOP is tri-n-octylphosphine; TOPO is tri-n-octylphosphine oxide.
Figure 7
Figure 8
Effect of inhomogeneous broadening on the shape and structure of the optical absorption spectra of Ag2S QDs passivated with thioglycolic acid (TGA). The QD size distributions in ensembles, derived from analysis of TEM images, corresponding to the given spectra are shown on the right[375].
Figure 9
Size dependences of the energy of the QD ground exciton absorption transition obtained experimentally and using various semiempirical models for CdS QDs[52, 103, 329, 334, 379, 340-348], Ag2S QDs[126, 132, 141, 145, 150, 350-356], CdSe QDs[51, 78, 357-360] and PbS QDs[361-367]. Designations: 1[334], 2[340], 3[341], 4[342], 5[343], 6[344], 7[345], 8[346], 9[103], 10[347], 11[348], 12[52], 13[329], 14[349], 15[350], 16[351], 17[132], 18[150], 19[352], 20[145], 21[126], 22[353], 23[141], 24[354], 25[355], 26[356], 27[78], 28[357], 29[358], 30[359], 31[360], 32[51], 33[361], 34[362], 35[363], 36[364], 37[365], 38[366], 39[367].
Figure 10
Energy diagram explaining the Stokes shift for exciton luminescence in colloidal CdSe QDs.
Figure 11
Figure 12
Figure 13
(a) Absorption spectra of InP/ZnS QDs at various temperatures. (b) Analysis of the temperature behaviour of the exciton absorption band for InP/ZnS QDs of various sizes. The continuous lines show the approximation of the temperature-dependent shift by expression (23); dashed lines show the temperature dependence of the coefficient β[377, 620].
Figure 14
Simulated exciton absorption band for the InP/ZnS ensemble in comparison with experimental data. The inset shows the temperature-induced variation of absorption peaks for a single model nanocrystal[600]. (Published under the Open Access CC BY license).
Figure 15
Mechanisms of blinking of quantum dots. (a) On- and off-states of a quantum dot in the charging model. High luminescence quantum yield in the neutral QD state corresponds to the on-state (left), and low quantum yield in the charged QD state due to the nonradiative Auger recombination corresponds to the off-state (right). The luminescence signal of a single QD fluctuates predominantly between two intensity levels (bottom). (b) Luminescence quenching due to non-radiative recombination through defect states (trap) (top). Luminescence blinking with a quasi-continuous distribution of luminescence intensity levels (bottom) arises due to fluctuations in the rate of the non-radiative relaxation channel.
Figure 16
Study of photon statistics using an intensity interferometer. (a) Schematic setup of an interferometer used to study the effect of photon antibunching. (b) Second-order correlation function for the luminescence of a single QD measured under pulsed laser pumping, which exhibits pronounced photon antibunching. (c) Partial photon antibunching of quantum dot luminescence in the case of weak Auger ionization. The relative magnitude of the zero peak in the g(2) function depends on the ratio of the quantum yields of biexciton and exciton luminescence.
Figure 17
Example of spectral diffusion of a single tetrakis(tert-butyl)terrylene molecule in polyisobutylene (a) and toluene (b) at cryogenic temperature (7 K)[669].
Figure 18
Spectral dynamics of single quantum dots exemplified by colloidal CdSeS/ZnS QDs: (a) spectral trace of a single QD showing the presence of spectral diffusion, obtained by repeated measurements of the photoluminescence spectrum; (b) correlation between the position of the luminescence peak of a single QD and linewidth. The results were obtained similarly to the measurements repoered by Podshivaylov et al[638].
Figure 19
Raman spectra of quantum dots at room temperature: (a) thin-layer ensemble of CdSe/CdS/ZnS quantum dots on the surface of a glass substrate measured in the anti-Stokes mode[675]; (b) single CdSe quantum dot on a silicon substrate measured in the hyper-enhancement mode with the sample being placed in the gap between the tip of a probe microscope and a plasmonic nanoparticle as part of an enhancing nanostructured metasurface (combined SERS-TERS mode; surface- and tip-enhanced Raman scattering). The inset shows a map of the TERS signal intensity distribution in the sample plane; the locations for which the corresponding TERS spectra were measured are marked with numbers from 1 to 6[676].
Figure 20
Sequentially recorded fluorescence images of single semiconductor colloidal CdSeS/ZnS QDs in the field of view of a wide-field epiluminescence microscope 20×20 μm2[677]. The acquisition time for one image is 100 ms.
Figure 21
Localization nanoscopy with quantum dots. (a) Schematic representation of the quantum dot images processing for reconstruction of the coordinates of the luminescence centres. Example of a luminescent image of a single quantum dot. (b) Distribution of reconstructed coordinates for a fixed spatial position of single CdSe/ZnS QD. (c) Dependence of the accuracy of reconstruction of the X and Y coordinates of single QD on the number of photocounts[667]. (d) Example of optical nanotracking of a CdSe/ZnS quantum dot.
Figure 22
Index of cytotoxicity for aqueous colloidal solutions of CdS in various concentrations (green columns) after the synthesis and for precursors according to methyl thiazolyl tetrazolium (МТТ) assay data, CPT is camptothecin (control)[716].
Figure 23
Possible mechanisms of cellular uptake of nanoparticles and quantum dots depending on the shape, size, charge and molecules attached to the surface. Phagocytosis (1) and macropinocytosis (2) for aggregates and large nanoparticles; different mechanisms of pinocytosis (2–9) depending on the shape and attached molecules; direct uptake (10) and pore formation (11) for nanoparticles either positively charged and/or less than 10 nm in size[717]. The picture is published according to the Creative Commons Attribution 3.0 Unported License.
Figure 24
Micrographs (optical luminescence microscopy) of the changes in healthy cells after infection with CMV: (a) healthy cell monolayer; (b) 24 h after the infection: monolayer loosening, change of cell shape to more rounded, enlargement of nuclei, intense luminescence of nuclear cells; (c) 48 h after the infection: some of nuclear inclusions are surrounded by a light rim, which imparts the ‘owl’s eye’ look (marked in red); voids with remaining parts of cell matrix fibres are seen in place of destroyed cells; and cell orientation disorder. Simultaneously, cells without visible changes can also be seen; (d) 72 h after the infection: complete destruction of the monolayer, remainder of the cell matrix.
1.
Bera D., Qian L., Tseng T., Holloway P.H.
Materials, Multidisciplinary Digital Publishing Institute (MDPI), 2010
Mentions: 3
2.
Vasiliev R.B., Dirin D.N., Gaskov A.M.
Russian Chemical Reviews, Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii, 2011
Mentions: 6
3.
Evans C.M., Cass L.C., Knowles K.E., Tice D.B., Chang R.P., Weiss E.A.
Journal of Coordination Chemistry, Taylor & Francis, 2012
Mentions: 3
4.
Pietryga J.M., Park Y., Lim J., Fidler A.F., Bae W.K., Brovelli S., Klimov V.I.
Chemical Reviews, American Chemical Society (ACS), 2016
Mentions: 5
5.
Brichkin S.B., Razumov V.F.
Russian Chemical Reviews, Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii, 2016
Mentions: 4
6.
García de Arquer F.P., Talapin D.V., Klimov V.I., Arakawa Y., Bayer M., Sargent E.H.
Science, American Association for the Advancement of Science (AAAS), 2021
Mentions: 2
7.
Chen T., Chen Y., Li Y., Liang M., Wu W., Wang Y.
Materials, Multidisciplinary Digital Publishing Institute (MDPI), 2023
Mentions: 2
8.
Goldstein L., Glas F., Marzin J.Y., Charasse M.N., Le Roux G.
Applied Physics Letters, American Institute of Physics (AIP), 1985
Mentions: 1
9.
Dingle R., Wiegmann W., Henry C.H.
Physical Review Letters, American Physical Society (APS), 1974
Mentions: 2
10.
11.
Nötzel R., Ledentsov N.N., Däweritz L., Hohenstein M., Ploog K.
Physical Review Letters, American Physical Society (APS), 1991
Mentions: 2
12.
Tasco V., Deguffroy N., Baranov A.N., Tournié E., Satpati B., Trampert A., Dunaevski M., Titkov A.
Journal of Crystal Growth, Elsevier, 2007
Mentions: 2
13.
Möck P., Booker G.R., Mason N.J., Nicholas R.J., Aphandéry E., Topuria T., Browning N.D.
Materials Science and Engineering B: Solid-State Materials for Advanced Technology, Elsevier, 2001
Mentions: 1
14.
Reed M., Randall J., Aggarwal R., Matyi R., Moore T., Wetsel A.
Physical Review Letters, American Physical Society (APS), 2002
Mentions: 1
15.
Chen Y., Chen T., Qin Z., Xie Z., Liang M., Li Y., Lin J.
Journal of Alloys and Compounds, Elsevier, 2023
Mentions: 1
16.
Castro S.L., Bailey S.G., Raffaelle R.P., Banger K.K., Hepp A.F.
Journal of Physical Chemistry B, American Chemical Society (ACS), 2004
Mentions: 1
17.
Ponomaryova T.S., Novikova A.S., Abramova A.M., Goryacheva O.A., Drozd D.D., Strokin P.D., Goryacheva I.Y.
Journal of Analytical Chemistry, Pleiades Publishing, 2022
Mentions: 1
18.
Protesescu L., Yakunin S., Bodnarchuk M.I., Krieg F., Caputo R., Hendon C.H., Yang R.X., Walsh A., Kovalenko M.V.
Nano Letters, American Chemical Society (ACS), 2015
Mentions: 1
19.
Gaponik N., Hickey S.G., Dorfs D., Rogach A.L., Eychmüller A.
Small, Wiley, 2010
Mentions: 2
20.
21.
Kvantovaya Mekhanika. (Quantum Mechanics). (Moscow: Fizmatgiz)
A.S.Davydov
1963
Mentions: 1
22.
23.
Fröhlich H.
Physica, Elsevier, 1937
Mentions: 1
24.
25.
Tavger B.A., Demikhovskiĭ V.Y.
Soviet Physics Uspekhi, Turpion Ltd, 1969
Mentions: 2
26.
Katzschmann R., Rehfeld A., Kranold R.
phys stat sol (a), Wiley, 1977
Mentions: 1
27.
Sov. J. Glass Phys. Chem., 6, 511
A.I.Ekimov, A.A.Onushchenko, V.A.Tsekhomskii
1980
Mentions: 2
28.
Sov. J. Glas. Phys. Chem. 7, 264
V.V.Golubkov, A.I.Ekimov, A.A.Onushchenko, V.A.Tzehomskii
1981
Mentions: 2
29.
30.
Fiz. Tekhn. Poluprovodnikov, 16, 1215
A.I.Ekimov, A.A.Onushchenko
1982
Mentions: 2
31.
Fiz. Tekhn. Poluprovodnikov, 16, 1209
Al.L.Efros, A.L.Efros
1982
Mentions: 9
32.
33.
Ekimov A.I., Efros A.L., Onushchenko A.A.
Solid State Communications, Elsevier, 1985
Mentions: 2
34.
JETP Lett., 46, 495
Yu.V.Vandyshev, V.S.Dneprovskii, A.I.Ekimov, D.K.Okorokov, L.B.Popova, Al.L.Efros
1987
Mentions: 2
35.
Ekimov A.I., Efros A.L., Ivanov M.G., Onushchenko A.A., Shumilov S.K.
Solid State Communications, Elsevier, 1989
Mentions: 2
36.
Ekinov A.I., Efros A.L., Shubina T.V., Skvortsov A.P.
Journal of Luminescence, Elsevier, 1990
Mentions: 1
37.
Ekimov A.I., Kudryavtsev I.A., Efros A.L., Yazeva T.V., Hache F., Schanne-Klein M.C., Rodina A.V., Ricard D., Flytzanis C.
Journal of the Optical Society of America B: Optical Physics, Optical Society of America, 1993
Mentions: 2
38.
Itoh T., Nishijima M., Ekimov A.I., Gourdon C., Efros A.L., Rosen M.
Physical Review Letters, American Physical Society (APS), 1995
Mentions: 1
39.
Ekimov A.
Journal of Luminescence, Elsevier, 1996
Mentions: 1
40.
Kalyanasundaram K., Borgarello E., Duonghong D., Grätzel M.
1981
Mentions: 2
41.
Henglein A.
Berichte der Bunsengesellschaft für physikalische Chemie, Wiley, 1982
Mentions: 5
42.
Rossetti R., Brus L.
The Journal of Physical Chemistry, American Chemical Society (ACS), 1982
Mentions: 5
43.
Rossetti R., Nakahara S., Brus L.E.
Journal of Chemical Physics, American Institute of Physics (AIP), 1983
Mentions: 8
44.
Brus L.E.
Journal of Chemical Physics, American Institute of Physics (AIP), 1983
Mentions: 7
45.
Brus L.E.
Journal of Chemical Physics, American Institute of Physics (AIP), 1984
Mentions: 8
46.
Brus L.
The Journal of Physical Chemistry, American Chemical Society (ACS), 1986
Mentions: 7
47.
Lesnyak V., Gaponik N., Eychmüller A.
Chemical Society Reviews, Royal Society of Chemistry (RSC), 2013
Mentions: 3
48.
Rogach A.L., Katsikas L., Kornowski A., Su D., Eychmüller A., Weller H.
Berichte der Bunsengesellschaft für physikalische Chemie, Wiley, 1996
Mentions: 2
49.
Steigerwald M.L., Alivisatos A.P., Gibson J.M., Harris T.D., Kortan R., Muller A.J., Thayer A.M., Duncan T.M., Douglass D.C., Brus L.E.
Journal of the American Chemical Society, American Chemical Society (ACS), 1988
Mentions: 3
50.
Steigerwald M.L., Brus L.E.
Annual Review of Materials Science, Annual Reviews, 1989
Mentions: 1
51.
Murray C.B., Norris D.J., Bawendi M.G.
Journal of the American Chemical Society, American Chemical Society (ACS), 1993
Mentions: 17
52.
Kayanuma Y.
Physical Review B, American Physical Society (APS), 1988
Mentions: 7
53.
Nair S.V., Sinha S., Rustagi K.C.
Physical Review B, American Physical Society (APS), 1987
Mentions: 2
54.
Lippens P.E., Lannoo M.
Physical Review B, American Physical Society (APS), 1989
Mentions: 3
55.
Kayanuma Y., Momiji H.
Physical Review B, American Physical Society (APS), 1990
Mentions: 5
56.
Efros A.L., Rosen M., Kuno M., Nirmal M., Norris D.J., Bawendi M.
Physical Review B, American Physical Society (APS), 1996
Mentions: 10
57.
Fomin V.M., Gladilin V.N., Devreese J.T., Pokatilov E.P., Balaban S.N., Klimin S.N.
Physical Review B, American Physical Society (APS), 1998
Mentions: 2
58.
Vasilevskii M.I., Akinkina E.I., de Paula A.M., Anda E.V.
Semiconductors, Pleiades Publishing, 1998
Mentions: 2
59.
Pokutnyĭ S.I.
Semiconductors, Pleiades Publishing, 2007
Mentions: 2
60.
Ferreyra J.M., Proetto C.R.
Physical Review B, American Physical Society (APS), 1998
Mentions: 2
61.
Tkach N.V., Sety Y.A.
Semiconductors, Pleiades Publishing, 2006
Mentions: 2
62.
63.
64.
Pokutnyi S.I.
Semiconductors, Pleiades Publishing, 2005
Mentions: 2
65.
Pokutniĭ S.I.
Semiconductors, Pleiades Publishing, 2006
Mentions: 3
66.
Nair S.V., Ramaniah L.M., Rustagi K.C.
Physical Review B, American Physical Society (APS), 1992
Mentions: 4
67.
Pellegrini G., Mattei G., Mazzoldi P.
Journal of Applied Physics, American Institute of Physics (AIP), 2005
Mentions: 4
68.
Fiz. Tv. Tela, 32, 1772
G.B.Grigoryan, E.M.Kazaryan, A.L.Efros, T.V.Yazeva
1990
Mentions: 5
69.
Xia J.
Physical Review B, American Physical Society (APS), 1989
Mentions: 6
70.
Koch S.W., Hu Y.Z., Fluegel B., Peyghambarian N.
Journal of Crystal Growth, Elsevier, 1992
Mentions: 4
71.
Efros A.L.
Superlattices and Microstructures, Elsevier, 1992
Mentions: 5
72.
Korolev N.V., Smirnov M.S., Ovchinnikov O.V., Shatskikh T.S.
Physica E: Low-Dimensional Systems and Nanostructures, Elsevier, 2015
Mentions: 8
73.
Puzder A., Williamson A.J., Gygi F., Galli G.
Physical Review Letters, American Physical Society (APS), 2004
Mentions: 3
74.
Niaz S., Zdetsis A.D.
Journal of Physical Chemistry C, American Chemical Society (ACS), 2016
Mentions: 3
75.
Gert A.V., Nestoklon M.O., Prokofiev A.A., Yassievich I.N.
Semiconductors, Pleiades Publishing, 2017
Mentions: 3
76.
Sapra S., Sarma D.D.
Physical Review B, American Physical Society (APS), 2004
Mentions: 2
77.
Viswanatha R., Sapra S., Saha-Dasgupta T., Sarma D.D.
Physical Review B, American Physical Society (APS), 2005
Mentions: 2
78.
Nazzal A., Fu H.
Journal of Computational and Theoretical Nanoscience, American Scientific Publishers, 2009
Mentions: 7
79.
Voznyy O.
Journal of Physical Chemistry C, American Chemical Society (ACS), 2011
Mentions: 5
80.
Bryant G.W., Jaskolski W.
Journal of Physical Chemistry B, American Chemical Society (ACS), 2005
Mentions: 5
81.
Kilina S., Ivanov S., Tretiak S.
Journal of the American Chemical Society, American Chemical Society (ACS), 2009
Mentions: 4
82.
Protesescu L., Nachtegaal M., Voznyy O., Borovinskaya O., Rossini A.J., Emsley L., Copéret C., Günther D., Sargent E.H., Kovalenko M.V.
Journal of the American Chemical Society, American Chemical Society (ACS), 2015
Mentions: 3
83.
Giansante C., Infante I.
Journal of Physical Chemistry Letters, American Chemical Society (ACS), 2017
Mentions: 5
84.
Voznyy O., Sargent E. .
Physical Review Letters, American Physical Society (APS), 2014
Mentions: 7
85.
Ip A.H., Thon S.M., Hoogland S., Voznyy O., Zhitomirsky D., Debnath R., Levina L., Rollny L.R., Carey G.H., Fischer A., Kemp K.W., Kramer I.J., Ning Z., Labelle A.J., Chou K.W., Amassian A., Sargent E.H.
Nature Nanotechnology, Springer Nature, 2012
Mentions: 5
86.
Voznyy O., Thon S.M., Ip A.H., Sargent E.H.
Journal of Physical Chemistry Letters, American Chemical Society (ACS), 2013
Mentions: 7
87.
Hines M.A., Guyot-Sionnest P.
The Journal of Physical Chemistry, American Chemical Society (ACS), 1996
Mentions: 7
88.
Morris-Cohen A.J., Donakowski M.D., Knowles K.E., Weiss E.A.
Journal of Physical Chemistry C, American Chemical Society (ACS), 2009
Mentions: 2
89.
Mary Vijila C.V., Rajeev Kumar K., Jayaraj M.K.
Optical Materials, Elsevier, 2019
Mentions: 1
90.
Ding S., Hao M., Lin T., Bai Y., Wang L.
Journal of Energy Chemistry, Elsevier, 2022
Mentions: 1
91.
Zhou J., Liu Y., Tang J., Tang W.
Materials Today, Elsevier, 2017
Mentions: 1
92.
Singh R.
Journal of Luminescence, Elsevier, 2018
Mentions: 1
93.
Nirmal M., Norris D.J., Kuno M., Bawendi M.G., Efros A.L., Rosen M.
Physical Review Letters, American Physical Society (APS), 1995
Mentions: 12
94.
Klimov V.I.
Journal of Physical Chemistry B, American Chemical Society (ACS), 2000
Mentions: 11
95.
Hu Z., Kim Y., Krishnamurthy S., Avdeev I.D., Nestoklon M.O., Singh A., Malko A.V., Goupalov S.V., Hollingsworth J.A., Htoon H.
Nano Letters, American Chemical Society (ACS), 2019
Mentions: 3
96.
Scholes G.D., Jones M., Kumar S.
Journal of Physical Chemistry C, American Chemical Society (ACS), 2007
Mentions: 1
97.
Jana A., Lawrence K.N., Teunis M.B., Mandal M., Kumbhar A., Sardar R.
Chemistry of Materials, American Chemical Society (ACS), 2016
Mentions: 1
98.
Maiti S., Debnath T., Maity P., Ghosh H.N.
Journal of Physical Chemistry C, American Chemical Society (ACS), 2015
Mentions: 1
99.
Bawendi M.G., Carroll P.J., Wilson W.L., Brus L.E.
Journal of Chemical Physics, American Institute of Physics (AIP), 1992
Mentions: 4
100.
Ekimov A.I., Kudryavtsev I.A., Ivanov M.G., Efros A.L.
Journal of Luminescence, Elsevier, 1990
Mentions: 12
101.
Hässelbarth A., Eychmüller A., Weller H.
Chemical Physics Letters, Elsevier, 1993
Mentions: 4
102.
Katsaba A.V., Ambrozevich S.A., Vitukhnovsky A.G., Fedyanin V.V., Lobanov A.N., Krivobok V.S., Vasiliev R.B., Samatov I.G.
Journal of Applied Physics, American Institute of Physics (AIP), 2013
Mentions: 10
103.
Majumder M., Karan S., Mallik B.
Journal of Luminescence, Elsevier, 2011
Mentions: 6
104.
Ovchinnikov O.V., Smirnov M.S., Shapiro B.I., Shatskikh T.S., Perepelitsa A.S., Korolev N.V.
Semiconductors, Pleiades Publishing, 2015
Mentions: 7
105.
Ovchinnikov O.V., Smirnov M.S., Korolev N.V., Golovinski P.A., Vitukhnovsky A.G.
Journal of Luminescence, Elsevier, 2016
Mentions: 10
106.
Perepelitsa A.S., Smirnov M.S., Ovchinnikov O.V., Latyshev A.N., Kotko A.S.
Journal of Luminescence, Elsevier, 2018
Mentions: 7
107.
Smirnov M.S., Ovchinnikov O.V.
Journal of Luminescence, Elsevier, 2020
Mentions: 6
108.
Rayevska O.E., Grodzyuk G.Y., Dzhagan V.M., Stroyuk O.L., Kuchmiy S.Y., Plyusnin V.F., Grivin V.P., Valakh M.Y.
Journal of Physical Chemistry C, American Chemical Society (ACS), 2010
Mentions: 6
109.
Andreakou P., Brossard M., Li C., Bernechea M., Konstantatos G., Lagoudakis P.G.
Journal of Physical Chemistry C, American Chemical Society (ACS), 2013
Mentions: 2
110.
Ovchinnikov O.V., Smirnov M.S., Shapiro B.I., Latyshev A.N., Shatskikh T.S., Bordyuzha E.E., Soldatenko S.A.
Theoretical and Experimental Chemistry, Springer Nature, 2012
Mentions: 3
111.
Peng Z.A., Peng X.
Journal of the American Chemical Society, American Chemical Society (ACS), 2001
Mentions: 1
112.
Wang F., Tang R., Buhro W.E.
Nano Letters, American Chemical Society (ACS), 2008
Mentions: 2
113.
Kopping J.T., Patten T.E.
Journal of the American Chemical Society, American Chemical Society (ACS), 2008
Mentions: 1
114.
Kortan A.R., Hull R., Opila R.L., Bawendi M.G., Steigerwald M.L., Carroll P.J., Brus L.E.
Journal of the American Chemical Society, American Chemical Society (ACS), 1990
Mentions: 4
115.
Kim D., Miyamoto M., Mishima T., Nakayama M.
Journal of Applied Physics, American Institute of Physics (AIP), 2005
Mentions: 1
116.
Brichkin S.B., Spirin M.G., Nikolenko L.M., Nikolenko D.Y., Gak V.Y., Ivanchikhina A.V., Razumov V.F.
High Energy Chemistry, Pleiades Publishing, 2008
Mentions: 1
117.
Baranov A.V., Rakovich Y.P., Donegan J.F., Perova T.S., Moore R.A., Talapin D.V., Rogach A.L., Masumoto Y., Nabiev I.
Physical Review B, American Physical Society (APS), 2003
Mentions: 4
118.
Azizi S.N., Chaichi M.J., Shakeri P., Bekhradnia A.
Journal of Luminescence, Elsevier, 2013
Mentions: 1
119.
Hosseini M.S., Jahanbani H.
Journal of Luminescence, Elsevier, 2013
Mentions: 1
120.
Adegoke O., Nyokong T.
Journal of Luminescence, Elsevier, 2013
Mentions: 1
121.
Pawar S.P., Gore A.H., Walekar L.S., Anbhule P.V., Patil S.R., Kolekar G.B.
Sensors and Actuators, B: Chemical, Elsevier, 2015
Mentions: 1
122.
Chen Z., Chen J., Liang Q., Wu D., Zeng Y., Jiang B.
Journal of Luminescence, Elsevier, 2014
Mentions: 1
123.
Vitukhnovsky A.G.
Physics-Uspekhi, Uspekhi Fizicheskikh Nauk Journal, 2011
Mentions: 2
124.
Vitukhnovsky A.G.
Physics-Uspekhi, Uspekhi Fizicheskikh Nauk Journal, 2013
Mentions: 2
125.
Pal B.N., Ghosh Y., Brovelli S., Laocharoensuk R., Klimov V.I., Hollingsworth J.A., Htoon H.
Nano Letters, American Chemical Society (ACS), 2011
Mentions: 1
126.
Hocaoglu I., Çizmeciyan M.N., Erdem R., Ozen C., Kurt A., Sennaroglu A., Acar H.Y.
Journal of Materials Chemistry A, Royal Society of Chemistry (RSC), 2012
Mentions: 5
127.
Sun L., Choi J.J., Stachnik D., Bartnik A.C., Hyun B., Malliaras G.G., Hanrath T., Wise F.W.
Nature Nanotechnology, Springer Nature, 2012
Mentions: 1
128.
Coe S., Woo W., Bawendi M., Bulović V.
Nature, Springer Nature, 2002
Mentions: 1
129.
Zorn M., Bae W.K., Kwak J., Lee H., Lee C., Zentel R., Char K.
ACS Nano, American Chemical Society (ACS), 2009
Mentions: 1
130.
Zhang Y., Hong G., Zhang Y., Chen G., Li F., Dai H., Wang Q.
ACS Nano, American Chemical Society (ACS), 2012
Mentions: 1
131.
Li C., Li F., Zhang Y., Zhang W., Zhang X., Wang Q.
ACS Nano, American Chemical Society (ACS), 2015
Mentions: 3
132.
Tang R., Xue J., Xu B., Shen D., Sudlow G.P., Achilefu S.
ACS Nano, American Chemical Society (ACS), 2015
Mentions: 9
133.
Kairdolf B.A., Smith A.M., Stokes T.H., Wang M.D., Young A.N., Nie S.
Annual Review of Analytical Chemistry, Annual Reviews, 2013
Mentions: 1
134.
Ross. Nanotekhnol., 2, 160
V.A.Oleinikov, A.V.Sukhanova, I.R.Nabiev
2007
Mentions: 2
135.
Michalet X., Pinaud F.F., Bentolila L.A., Tsay J.M., Doose S., Li J.J., Sundaresan G., Wu A.M., Gambhir S.S., Weiss S.
Science, American Association for the Advancement of Science (AAAS), 2005
Mentions: 1
136.
Bruchez M., Moronne M., Gin P., Weiss S., Alivisatos A.P.
Science, American Association for the Advancement of Science (AAAS), 1998
Mentions: 2
137.
Hong G., Antaris A.L., Dai H.
Nature Biomedical Engineering, Springer Nature, 2017
Mentions: 1
138.
Petryayeva E., Algar W.R., Medintz I.L.
Applied Spectroscopy, SAGE, 2013
Mentions: 3
139.
Jiang P., Zhu C., Zhang Z., Tian Z., Pang D.
Biomaterials, Elsevier, 2012
Mentions: 2
140.
Jamieson T., Bakhshi R., Petrova D., Pocock R., Imani M., Seifalian A.M.
Biomaterials, Elsevier, 2007
Mentions: 1
141.
Duman F.D., Hocaoglu I., Ozturk D.G., Gozuacik D., Kiraz A., Yagci Acar H.
Nanoscale, Royal Society of Chemistry (RSC), 2015
Mentions: 4
142.
He Z., Zhu H., Zhou P.
Journal of Fluorescence, Springer Nature, 2011
Mentions: 1
143.
Ma Q., Chen J., wu X., Wang P., Yue Y., Dai N.
Journal of Luminescence, Elsevier, 2011
Mentions: 1
144.
Huang H., Liu J., Han B., Mi C., Xu S.
Journal of Luminescence, Elsevier, 2012
Mentions: 1
145.
Tan L., Wan A., Li H.
Langmuir, American Chemical Society (ACS), 2013
Mentions: 5
146.
Hong G., Robinson J.T., Zhang Y., Diao S., Antaris A.L., Wang Q., Dai H.
Angewandte Chemie - International Edition, Wiley, 2012
Mentions: 3
147.
Wang Y., Yan X.
Chemical Communications, Royal Society of Chemistry (RSC), 2013
Mentions: 3
148.
Xu S., Cui J., Wang L.
TrAC - Trends in Analytical Chemistry, Elsevier, 2016
Mentions: 1
149.
Jin Z., Wang A., Zhou Q., Wang Y., Wang J.
Scientific Reports, Springer Nature, 2016
Mentions: 1
150.
Mir W.J., Swarnkar A., Sharma R., Katti A., Adarsh K.V., Nag A.
Journal of Physical Chemistry Letters, American Chemical Society (ACS), 2015
Mentions: 7
151.
Kamat P.V., Dimitrijević N.M.
Solar Energy, Elsevier, 1990
Mentions: 1
152.
O'Regan B., Grätzel M.
Nature, Springer Nature, 1991
Mentions: 1
153.
Wu P., Yu J., Chao H., Chang J.
Chemistry of Materials, American Chemical Society (ACS), 2014
Mentions: 1
154.
Xie Y., Yoo S.H., Chen C., Cho S.O.
Materials Science and Engineering B: Solid-State Materials for Advanced Technology, Elsevier, 2012
Mentions: 1
155.
Tubtimtae A., Wu K., Tung H., Lee M., Wang G.J.
Electrochemistry Communications, Elsevier, 2010
Mentions: 1
156.
Shen H., Jiao X., Oron D., Li J., Lin H.
Journal of Power Sources, Elsevier, 2013
Mentions: 1
157.
Pourahmad A.
Superlattices and Microstructures, Elsevier, 2012
Mentions: 1
158.
Jiang W., Wu Z., Yue X., Yuan S., Lu H., Liang B.
RSC Advances, Royal Society of Chemistry (RSC), 2015
Mentions: 1
159.
Nagasuna K., Akita T., Fujishima M., Tada H.
Langmuir, American Chemical Society (ACS), 2011
Mentions: 1
160.
Abdullah H., Kuo D.
ACS applied materials & interfaces, American Chemical Society (ACS), 2015
Mentions: 1
161.
Shao L., Gao Y., Yan F.
Sensors, Multidisciplinary Digital Publishing Institute (MDPI), 2011
Mentions: 1
162.
Lv G., Guo W., Zhang W., Zhang T., Li S., Chen S., Eltahan A.S., Wang D., Wang Y., Zhang J., Wang P.C., Chang J., Liang X.
ACS Nano, American Chemical Society (ACS), 2016
Mentions: 1
163.
Charron G., Stuchinskaya T., Edwards D.R., Russell D.A., Nann T.
Journal of Physical Chemistry C, American Chemical Society (ACS), 2012
Mentions: 1
164.
Zhou M., Chang S., Grover C.P.
Optics Express, Optical Society of America, 2004
Mentions: 1
165.
Molotkov S.N., Nazin S.S.
JETP Letters, Pleiades Publishing, 1996
Mentions: 1
166.
Chang S., Zhou M., Grover C.P.
Optics Express, Optical Society of America, 2004
Mentions: 1
167.
Goss K.C., Messier G.G., Potter M.E.
Optics Express, Optical Society of America, 2012
Mentions: 1
168.
Abitbol T., Gray D.G.
Cellulose, Springer Nature, 2008
Mentions: 1
169.
JETP Lett., 54, 442
Y.V.Vandyshev, V.S.Dneprovskn, V.I.Klimov, D.K.Okorokov
1991
Mentions: 1
170.
Klimov V.I., Mikhailovsky A.A., Xu S., Malko A., Hollingsworth J.A., Leatherdale C.A., Eisler H.-., Bawendi M.G.
Science, American Association for the Advancement of Science (AAAS), 2000
Mentions: 2
171.
Klimov V.I., Ivanov S.A., Nanda J., Achermann M., Bezel I., McGuire J.A., Piryatinski A.
Nature, Springer Nature, 2007
Mentions: 1
172.
Fan F., Voznyy O., Sabatini R.P., Bicanic K.T., Adachi M.M., McBride J.R., Reid K.R., Park Y., Li X., Jain A., Quintero-Bermudez R., Saravanapavanantham M., Liu M., Korkusinski M., Hawrylak P., Klimov V.I., Rosenthal S.J., Hoogland S., Sargent E.H.
Nature, Springer Nature, 2017
Mentions: 1
173.
Chen Y., Herrnsdorf J., Guilhabert B., Zhang Y., Watson I.M., Gu E., Laurand N., Dawson M.D.
Optics Express, Optical Society of America, 2011
Mentions: 1
174.
Gies C., Florian M., Gartner P., Jahnke F.
Optics Express, Optical Society of America, 2011
Mentions: 1
175.
Zhang L., Liao C., Lv B., Wang X., Xiao M., Xu R., Yuan Y., Lu C., Cui Y., Zhang J.
ACS applied materials & interfaces, American Chemical Society (ACS), 2017
Mentions: 1
176.
Foucher C., Guilhabert B., Laurand N., Dawson M.D.
Applied Physics Letters, American Institute of Physics (AIP), 2014
Mentions: 1
177.
Yang J., Liu Y., Zhao Y., Gong Z., Zhang M., Yan D., Zhu H., Liu C., Xu C., Zhang H.
Chemistry of Materials, American Chemical Society (ACS), 2017
Mentions: 1
178.
Kalytchuk S., Adam M., Tomanec O., Zbořil R., Gaponik N., Rogach A.L.
ACS Photonics, American Chemical Society (ACS), 2017
Mentions: 3
179.
Fan L., Li Y., Lin X., Peng J., Ju G., Zhang S., Chen L., He F., Hu Y.
RSC Advances, Royal Society of Chemistry (RSC), 2017
Mentions: 1
180.
Ximendes E.C., Rocha U., Sales T.O., Fernández N., Sanz-Rodríguez F., Martín I.R., Jacinto C., Jaque D.
Advanced Functional Materials, Wiley, 2017
Mentions: 1
181.
Benayas A., del Rosal B., Pérez-Delgado A., Santacruz-Gómez K., Jaque D., Hirata G.A., Vetrone F.
Advanced Optical Materials, Wiley, 2015
Mentions: 1
182.
Cerón E.N., Ortgies D.H., del Rosal B., Ren F., Benayas A., Vetrone F., Ma D., Sanz-Rodríguez F., Solé J.G., Jaque D., Rodríguez E.M.
Advanced Materials, Wiley, 2015
Mentions: 2
183.
del Rosal B., Ximendes E., Rocha U., Jaque D.
Advanced Optical Materials, Wiley, 2016
Mentions: 2
184.
Ruiz D., del Rosal B., Acebrón M., Palencia C., Sun C., Cabanillas-González J., López-Haro M., Hungría A.B., Jaque D., Juarez B.H.
Advanced Functional Materials, Wiley, 2016
Mentions: 4
185.
Gao F., Li J., Wang F., Yang T., Zhao D.
Journal of Luminescence, Elsevier, 2015
Mentions: 1
186.
Xu S., Wang C., Zhang H., Wang Z., Yang B., Cui Y.
Nanotechnology, IOP Publishing, 2011
Mentions: 1
187.
Franke M., Leubner S., Dubavik A., George A., Savchenko T., Pini C., Frank P., Melnikau D., Rakovich Y., Gaponik N., Eychmüller A., Richter A.
Nanoscale Research Letters, Springer Nature, 2017
Mentions: 1
188.
Ratnesh R.K., Mehata M.S.
AIP Advances, American Institute of Physics (AIP), 2015
Mentions: 1
189.
Liu Y., Sun Y., Vernier P.T., Liang C., Chong S.Y., Gundersen M.A.
Journal of Physical Chemistry C, American Chemical Society (ACS), 2007
Mentions: 1
190.
Karimzadeh R., Aleali H., Mansour N.
Optics Communications, Elsevier, 2011
Mentions: 3
191.
Aleali H., Sarkhosh L., Karimzadeh R., Mansour N.
Physica Status Solidi (B): Basic Research, Wiley, 2010
Mentions: 3
192.
Kondratenko T.S., Zvyagin A.I., Smirnov M.S., Grevtseva I.G., Perepelitsa A.S., Ovchinnikov O.V.
Journal of Luminescence, Elsevier, 2019
Mentions: 5
193.
Kondratenko T.S., Smirnov M.S., Ovchinnikov O.V., Zvyagin A.I., Chevychelova T.A., Taydakov I.V.
Bulletin of the Lebedev Physics Institute, Pleiades Publishing, 2019
Mentions: 3
194.
Zvyagin A.I., Chevychelova T.A., Grevtseva I.G., Smirnov M.S., Selyukov A.S., Ovchinnikov O.V., Ganeev R.A.
Journal of Russian Laser Research, Springer Nature, 2020
Mentions: 3
195.
Ganeev R.A., Shuklov I.A., Zvyagin A.I., Dyomkin D.V., Smirnov M.S., Ovchinnikov O.V., Lizunova A.A., Perepukhov A.M., Popov V.S., Razumov V.F.
Optics Express, Optical Society of America, 2021
Mentions: 3
196.
Smirnov M.S., Ovchinnikov O.V., Zvyagin A.I., Tikhomirov S.A., Ponyavina A.N., Povedailo V.A., Binh N.T., Minh P.H.
Optics and Spectroscopy (English translation of Optika i Spektroskopiya), Pleiades Publishing, 2022
Mentions: 3
197.
Ovchinnikov O.V., Smirnov M.S., Perepelitsa A.S., Shatskikh T.S., Shapiro B.I.
Quantum Electronics, IOP Publishing, 2015
Mentions: 3
198.
Murray C.B., Kagan C.R., Bawendi M.G.
Annual Review of Materials Science, Annual Reviews, 2000
Mentions: 2
199.
Pradhan N., Reifsnyder D., Xie R., Aldana J., Peng X.
Journal of the American Chemical Society, American Chemical Society (ACS), 2007
Mentions: 1
200.
Rakovich A., Savateeva D., Rakovich T., Donegan J.F., Rakovich Y.P., Kelly V., Lesnyak V., Eychmüller A.
Nanoscale Research Letters, Springer Nature, 2010
Mentions: 3
201.
Boulesbaa A., Issac A., Stockwell D., Huang Z., Huang J., Guo J., Lian T.
Journal of the American Chemical Society, American Chemical Society (ACS), 2007
Mentions: 1
202.
Harris R.D., Bettis Homan S., Kodaimati M., He C., Nepomnyashchii A.B., Swenson N.K., Lian S., Calzada R., Weiss E.A.
Chemical Reviews, American Chemical Society (ACS), 2016
Mentions: 2
203.
Li X., Huang Z., Zavala R., Tang M.L.
Journal of Physical Chemistry Letters, American Chemical Society (ACS), 2016
Mentions: 1
204.
Walker B.J., Nair G.P., Marshall L.F., Bulović V., Bawendi M.G.
Journal of the American Chemical Society, American Chemical Society (ACS), 2009
Mentions: 1
205.
Halpert J.E., Tischler J.R., Nair G., Walker B.J., Liu W., Bulović V., Bawendi M.G.
Journal of Physical Chemistry C, American Chemical Society (ACS), 2009
Mentions: 1
206.
Karakoti A.S., Shukla R., Shanker R., Singh S.
Advances in Colloid and Interface Science, Elsevier, 2015
Mentions: 1
207.
Pacheco-Liñán P.J., Bravo I., Nueda M.L., Albaladejo J., Garzón-Ruiz A.
ACS Sensors, American Chemical Society (ACS), 2020
Mentions: 1
208.
Morosini V., Bastogne T., Frochot C., Schneider R., François A., Guillemin F., Barberi-Heyob M.
Photochemical and Photobiological Sciences, Springer Nature, 2011
Mentions: 1
209.
Viana O., Ribeiro M., Rodas A., Rebouças J., Fontes A., Santos B.
Molecules, Multidisciplinary Digital Publishing Institute (MDPI), 2015
Mentions: 1
210.
Jaiswal K.S., Kadamannil N.N., Jelinek R.
Current Opinion in Colloid and Interface Science, Elsevier, 2023
Mentions: 1
211.
Filali S., Pirot F., Miossec P.
Trends in Biotechnology, Elsevier, 2020
Mentions: 1
212.
Ligand engineering of colloid quantum dots and their application in all-inorganic tandem solar cells
Qiao F., Xie Y., Weng Z., Chu H.
Journal of Energy Chemistry, Elsevier, 2020
Mentions: 1
213.
Ramakrishnan K., Ajitha B., Ashok Kumar Reddy Y.
Sensors and Actuators, A: Physical, Elsevier, 2023
Mentions: 1
214.
Medintz I.L., Uyeda H.T., Goldman E.R., Mattoussi H.
Nature Materials, Springer Nature, 2005
Mentions: 1
215.
Whaley S.R., English D.S., Hu E.L., Barbara P.F., Belcher A.M.
Nature, Springer Nature, 2000
Mentions: 1
216.
Mirkin C.A., Letsinger R.L., Mucic R.C., Storhoff J.J.
Nature, Springer Nature, 1996
Mentions: 1
217.
Pons T., Mattoussi H.
Annals of Biomedical Engineering, Springer Nature, 2009
Mentions: 1
218.
Medintz I.L., Clapp A.R., Mattoussi H., Goldman E.R., Fisher B., Mauro J.M.
Nature Materials, Springer Nature, 2003
Mentions: 2
219.
Willard D.M., Carillo L.L., Jung J., Van Orden A.
Nano Letters, American Chemical Society (ACS), 2001
Mentions: 1
220.
Mahler B., Spinicelli P., Buil S., Quelin X., Hermier J., Dubertret B.
Nature Materials, Springer Nature, 2008
Mentions: 1
221.
222.
Ekimov A.I.
Physica Scripta, IOP Publishing, 1991
Mentions: 1
223.
Henglein A.
The Journal of Physical Chemistry, American Chemical Society (ACS), 1982
Mentions: 2
224.
Grätzel M., Moser J.
Proceedings of the National Academy of Sciences of the United States of America, Proceedings of the National Academy of Sciences (PNAS), 1983
Mentions: 2
225.
Fojtik A., Weller H., Koch U., Henglein A.
Berichte der Bunsengesellschaft für physikalische Chemie, Wiley, 1984
Mentions: 2
226.
Mau A.W., Huang C.B., Kakuta N., Bard A.J., Campion A., Fox M.A., White J.M., Webber S.E.
Journal of the American Chemical Society, American Chemical Society (ACS), 1984
Mentions: 1
227.
Tricot Y.M., Emeren A., Fendler J.H.
The Journal of Physical Chemistry, American Chemical Society (ACS), 1985
Mentions: 2
228.
Steigerwald M.L., Brus L.E.
Accounts of Chemical Research, American Chemical Society (ACS), 1990
Mentions: 3
229.
Rossetti R., Hull R., Gibson J.M., Brus L.E.
Journal of Chemical Physics, American Institute of Physics (AIP), 1985
Mentions: 2
230.
Rossetti R., Hull R., Gibson J.M., Brus L.E.
Journal of Chemical Physics, American Institute of Physics (AIP), 1985
Mentions: 1
231.
Chestnoy N., Hull R., Brus L.E.
Journal of Chemical Physics, American Institute of Physics (AIP), 1986
Mentions: 5
232.
Chestnoy N., Harris T.D., Hull R., Brus L.E.
The Journal of Physical Chemistry, American Chemical Society (ACS), 1986
Mentions: 4
233.
Henglein A.
Chemical Reviews, American Chemical Society (ACS), 1989
Mentions: 1
234.
Ramsden J.J., Grätzel M.
Journal of the Chemical Society Faraday Transactions 1 Physical Chemistry in Condensed Phases, Royal Society of Chemistry (RSC), 1984
Mentions: 1
235.
Rajh T., Vucemilovic M.I., Dimitrijevic N.M., Micic O.I., Nozik A.J.
Chemical Physics Letters, Elsevier, 1988
Mentions: 2
236.
Rossetti R., Ellison J.L., Gibson J.M., Brus L.E.
Journal of Chemical Physics, American Institute of Physics (AIP), 1984
Mentions: 2
237.
Smith A.M., Nie S.
Accounts of Chemical Research, American Chemical Society (ACS), 2009
Mentions: 1
238.
239.
Efros A.L., Brus L.E.
ACS Nano, American Chemical Society (ACS), 2021
Mentions: 1
240.
241.
Proizvodstvo Tsvetnogo Stekla. (Production of Colored Glass). (Moscow, Leningrad: Gizlegprom)
V.V.Vargin
1940
Mentions: 1
242.
243.
Khimicheskaya Tekhnologiya Stekla i Sittalov. (Chemical Technology of Glass and Glass Ceramics). (Moscow: Stroiizdat)
N.M.Pavlushkin
1983
Mentions: 2
244.
Okrashivanie Stekla. (Glass Painting). (Moscow: Stroiizdat)
I.Kotsik, I Nebrzhenskii, I.Fanderlik
1983
Mentions: 3
245.
Lifshitz I.M., Slyozov V.V.
Journal of Physics and Chemistry of Solids, Elsevier, 1961
Mentions: 5
246.
Gaponenko S.V.
1998
Mentions: 4
247.
Yükselici H., Allahverdi Ç., Aşıkoğlu A., Ünlü H., Baysal A., Çulha M., İnce R., İnce A., Feeney M., Athalin H.
NanoScience and Technology, Springer Nature, 2012
Mentions: 3
248.
249.
Fiz. Tv. Tela, 31 (8), 192
A.I.Ekimov, I.A.Kuryavtsev, M.G.Ivanov, Al.L.Efros
1989
Mentions: 1
250.
Potter B.G., Simmons J.H.
Physical Review B, American Physical Society (APS), 1988
Mentions: 1
251.
Nogami M., Nagasaka K., Kotani K.
Journal of Non-Crystalline Solids, Elsevier, 1990
Mentions: 1
252.
Medeiros Neto J.A., Barbosa L.C., Cesar C.L., Alves O.L., Galembeck F.
Applied Physics Letters, American Institute of Physics (AIP), 1991
Mentions: 1
253.
Borrelli N.F., Smith D.W.
Journal of Non-Crystalline Solids, Elsevier, 1994
Mentions: 1